Hermean Magnetosphere-Solar Wind Interaction

Abstract The small intrinsic magnetic field of Mercury together with its proximity to the Sun makes the Hermean magnetosphere unique in the context of comparative magnetosphere study. The basic framework of the Hermean magnetosphere is believed to be the same as that of Earth. However, there exist various differences which cause new and exciting effects not present at Earth to appear. These new effects may force a substantial correction of our naïve predictions concerning the magnetosphere of Mercury. Here, we outline the predictions based on our experience at Earth and what effects can drastically change this picture. The basic structure of the magnetosphere is likely to be understood by scaling the Earth’s case but its dynamic aspect is likely modified significantly by the smallness of the Hermean magnetosphere and the substantial presence of heavy ions coming from the planet’s surface.

[1]  M. Fujimoto,et al.  Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex , 1994 .

[2]  R. Hoffman,et al.  BX control of polar cap potential for northward interplanetary magnetic field , 1995 .

[3]  A. Nagy,et al.  Electron impact ionization in the vicinity of comets , 1987 .

[4]  S. Solomon,et al.  Determination of the properties of Mercury's magnetic field by the MESSENGER mission , 2004 .

[5]  M. Hoshino,et al.  Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer , 2006 .

[6]  W. Ip,et al.  Mercury’s Birkeland current system , 2002 .

[7]  A. Potter,et al.  Discovery of Sodium in the Atmosphere of Mercury , 1985, Science.

[8]  T. H. Morgan,et al.  A non-stoichiometric model of the composition of the atmospheres of Mercury and the Moon , 1997 .

[9]  Kenneth G. Powell,et al.  Interaction of Mercury with the Solar Wind , 1998 .

[10]  Thomas A. Bida,et al.  Discovery of calcium in Mercury's atmosphere , 2000, Nature.

[11]  James A. Slavin,et al.  Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape , 1981 .

[12]  Wolfgang Baumjohann,et al.  The magnetopause for large magnetic shear: AMPTE/IRM observations , 1986 .

[13]  C. Russell,et al.  Solar wind and substorm‐related changes in the lobes of the geomagnetic tail , 1973 .

[14]  T. Hill,et al.  Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles , 1976 .

[15]  C. Kennel,et al.  Can the ionosphere regulate magnetospheric convection , 1973 .

[16]  J. Eraker,et al.  Acceleration of charged particles in Mercury's magnetosphere , 1986 .

[17]  A. Balogh Introduction Mercury: the Planet and its Magnetosphere , 1997 .

[18]  M. Fujimoto,et al.  Solar wind control of density and temperature in the near‐Earth plasma sheet: WIND/GEOTAIL collaboration , 1997 .

[19]  W. Ip,et al.  MHD simulations of the solar wind interaction with Mercury , 2002 .

[20]  David G. Sibeck,et al.  An ISEE 3 study of average and substorm conditions in the distant magnetotail , 1985 .

[21]  David G. Sibeck,et al.  Solar wind control of the magnetopause shape, location, and motion , 1991 .

[22]  A. Miura Anomalous transport by magnetohydrodynamic Kelvin‐Helmholtz instabilities in the solar wind‐magnetosphere interaction , 1984 .

[23]  G. Siscoe,et al.  Variations in the solar wind stand‐off distance at Mercury , 1975 .

[24]  J. Raeder,et al.  Plasma sheet formation during long period of northward IMF , 2005 .

[25]  S. Schwartz,et al.  Evidence for newly closed magnetosheath field lines at the dayside magnetopause under northward IMF , 2006 .

[26]  J. Slavin,et al.  Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere , 1978 .

[27]  H. Nagano Effect of finite ion larmor radius on the Kelvin-Helmholtz instability of the magnetopause , 1978 .

[28]  L. L. Hood,et al.  Inhibition of solar wind impingement on Mercury by planetary induction currents , 1979 .

[29]  A. Sharma,et al.  Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy , 2004 .

[30]  H. Rauer,et al.  Neutral Sodium from Comet Hale-Bopp: A Third Type of Tail , 1997 .

[31]  W. Smyth,et al.  The Sodium and Potassium Atmospheres of the Moon , 1995 .

[32]  C. Kennel,et al.  CHANGES IN MAGNETOSPHERIC CONFIGURATION DURING SUBSTORM GROWTH PHASE. , 1972 .

[33]  James A. Slavin,et al.  The effect of erosion on the solar wind stand-off distance at Mercury , 1979 .

[34]  Stanley W. H. Cowley,et al.  Variations in the polar cap area during two substorm cycles , 2003 .

[35]  A. Miura Simulation of Kelvin-Helmholtz instability at the magnetospheric boundary , 1987 .

[36]  J. Steinberg,et al.  Geotail observations of the Kelvin‐Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields , 2000 .

[37]  J. Slavin Mercury's Magnetosphere , 2002 .

[38]  James Chen Nonlinear dynamics of charged particles in the magnetotail , 1992 .

[39]  M. Fujimoto,et al.  Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics. , 2004, Physical review letters.

[40]  H. Hasegawa,et al.  Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices , 2004, Nature.

[41]  Rudolf A. Treumann,et al.  Basic Space Plasma Physics , 1996 .

[42]  J. Slavin,et al.  Average configuration of the distant (<220 Re) magnetotail: Initial ISEE‐3 magnetic field results , 1983 .

[43]  J. Sojka,et al.  Pitch angle properties of magnetospheric thermal protons and satellite sheath interference in their observation , 1984 .

[44]  H. Shinagawa,et al.  Global hybrid simulation of the Kelvin–Helmholtz instability at the Venus ionopause , 2002 .

[45]  Pekka Janhunen,et al.  The response of the Hermean magnetosphere to the interplanetary magnetic field , 2004 .

[46]  D. Fairfield,et al.  Variability of the tail lobe field strength , 1996 .

[47]  K. Kabin A note on the compression ratio in MHD shocks , 2001, Journal of Plasma Physics.

[48]  N. Ness,et al.  Magnetic field of Mercury confirmed , 1975, Nature.

[49]  P. Esposito,et al.  The occultation of Mariner 10 by Mercury , 1976 .

[50]  G. Siscoe,et al.  Observations at the planet Mercury by the plasma electron experiment, Mariner 10 , 1976 .

[51]  M. Fujimoto,et al.  Dynamics of thin current sheets associated with magnetotail reconnection , 2006 .

[52]  Lev M. Zelenyi,et al.  Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion , 1989 .

[53]  G. Cremonese,et al.  Flux of meteoroid impacts on Mercury , 2005 .

[54]  J. Johnson,et al.  Kinetic Alfvén waves and plasma transport at the magnetopause , 1997 .

[55]  S. Wing,et al.  Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003 , 2005 .

[56]  S. Barabash,et al.  Ion acceleration processes in the Hermean and terrestrial magnetospheres , 1997 .

[57]  Wolfgang Baumjohann,et al.  The magnetosphere of Mercury and its solar wind environment , 2004 .

[58]  Wolfgang Baumjohann,et al.  Fast flow during current sheet thinning , 2002 .

[59]  Y. Whang Magnetospheric magnetic field of Mercury , 1977 .

[60]  A. Balogh,et al.  Modelling of magnetic field measurements at Mercury , 2001 .

[61]  A. Summers,et al.  Hydromagnetic flow around the magnetosphere , 1966 .

[62]  R. Lundin,et al.  Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near-Earth neutral line , 2006 .

[63]  J. Eraker,et al.  Electrons and Protons Accelerated in Mercury's Magnetic Field , 1974, Science.

[64]  D. Baker,et al.  A model of impulsive acceleration and transport of energetic particles in Mercury's magnetosphere , 1986 .

[65]  T. Mukai,et al.  GEOTAIL observation of magnetospheric convection in the distant tail at 200 RE in quiet times , 1995 .

[66]  James A. Slavin,et al.  Mariner 10 observations of field-aligned currents at Mercury , 1997 .

[67]  T. H. Morgan,et al.  Limits to the lunar atmosphere , 1991 .

[68]  R. Lysak,et al.  Magnetospheric Current Systems , 2000 .

[69]  C. Russell,et al.  Disturbances in Mercury's magnetosphere: Are the Mariner 10 “substorms” simply driven? , 1998 .

[70]  S. Christon A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales , 1987 .

[71]  H. Rosenbauer,et al.  Influence of the interplanetary magnetic field on the occurrence and thickness of the plasma mantle , 1976 .

[72]  Poedts,et al.  Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock flows with multiple interacting shock fronts , 2000, Physical review letters.

[73]  T. H. Morgan,et al.  Potassium in the atmosphere of Mercury , 1986 .

[74]  Wolfgang Baumjohann,et al.  Electric current and magnetic field geometry in flapping magnetotail current sheets , 2005 .

[75]  C. Russell,et al.  Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field , 1992 .

[76]  A. L. Broadfoot,et al.  Mariner 10 - Mercury atmosphere , 1976 .

[77]  Helmut Lammer,et al.  Monte-Carlo simulation of Mercury's exosphere , 2003 .

[78]  T. Hill,et al.  A Bx-interconnected magnetosphere model for Mercury , 2001 .

[79]  Rumi Nakamura,et al.  Local structure of the magnetotail current sheet: 2001 Cluster observations , 2006 .

[80]  Tilman Spohn,et al.  The interior structure of Mercury: what we know, what we expect from BepiColombo , 2001 .

[81]  K. Glassmeier,et al.  Induced magnetic field effects at planet Mercury , 2004 .

[82]  N. Ness,et al.  Substorms on Mercury , 1975 .

[83]  D. Hunten,et al.  The sodium and potassium atmosphere of the moon and its interaction with the surface , 1992 .