Characterization of Slit Protein Interactions with Glypican-1*

We have demonstrated previously that the Slit proteins, which are involved in axonal guidance and related developmental processes in nervous tissue, are ligands of the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican-1 in brain (Liang, Y., Annan, R. S., Carr, S. A., Popp, S., Mevissen, M., Margolis, R. K., and Margolis, R. U. (1999) J. Biol. Chem. 274, 17885–17892). To characterize these interactions in more detail, recombinant human Slit-2 protein and the N- and C-terminal portions generated by in vivo proteolytic processing were used in an enzyme-linked immunosorbent assay to measure the binding of a glypican-Fc fusion protein. Saturable and reversible high affinity binding to the full-length protein and to the C-terminal portion that is released from the cell membrane was seen, with dissociation constants in the 80–110 nm range, whereas only a relatively low level of binding to the larger N-terminal segment was detected. Co-transfection of 293 cells with Slit and glypican-1 cDNAs followed by immunoprecipitation demonstrated that these interactions also occurin vivo, and immunocytochemical studies showed colocalization in the embryonic and adult central nervous system. The binding affinity of the glypican core protein to Slit is an order of magnitude lower than that of the glycanated proteoglycan. Glypican binding to Slit was also decreased 80–90% by heparin (2 μg/ml), enzymatic removal of the heparan sulfate chains, and by chlorate inhibition of glypican sulfation. The differential effects ofN- or O-desulfated heparin on glypican binding also indicate that O-sulfate groups on the heparan sulfate chains play a critical role in heparin interactions with Slit. Our data suggest that glypican binding to the releasable C-terminal portion of Slit may serve as a mechanism for regulating the biological activity of Slit and/or the proteoglycan.

[1]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[2]  R. U. Margolis,et al.  Isolation and characterization of the heparan sulfate proteoglycans of brain. Use of affinity chromatography on lipoprotein lipase-agarose. , 1985, The Journal of biological chemistry.

[3]  H. Kresse,et al.  Influence of chlorate on proteoglycan biosynthesis by cultured human fibroblasts. , 1988, The Journal of biological chemistry.

[4]  D. Gowda,et al.  Chondroitin sulfate and heparan sulfate proteoglycans of PC12 pheochromocytoma cells. , 1989, The Journal of biological chemistry.

[5]  J. Rothberg,et al.  slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. , 1990, Genes & development.

[6]  R. U. Margolis,et al.  Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of brain identified with monoclonal antibodies. , 1991, The Journal of biological chemistry.

[7]  P. Maurel,et al.  Cloning of a major heparan sulfate proteoglycan from brain and identification as the rat form of glypican. , 1992, Biochemical and biophysical research communications.

[8]  B. Olwin,et al.  Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. , 1993, The Journal of biological chemistry.

[9]  R. U. Margolis,et al.  Disaccharide Composition of Heparan Sulfates: Brain, Nervous Tissue Storage Organelles, Kidney, and Lung , 1994, Journal of neurochemistry.

[10]  R. U. Margolis,et al.  Immunocytochemical and in situ hybridization studies of the heparan sulfate proteoglycan, glypican, in nervous tissue. , 1994, Journal of cell science.

[11]  S. Selleck,et al.  The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. , 1995, Development.

[12]  R. U. Margolis,et al.  Chondroitin sulfate proteoglycans in the developing central nervous system. II. Immunocytochemical localization of neurocan and phosphacan , 1996, The Journal of comparative neurology.

[13]  R. Weksberg,et al.  Glypicans: a growing trend , 1996, Nature Genetics.

[14]  P. Roughley,et al.  Glypican and Biglycan in the Nuclei of Neurons and Glioma Cells: Presence of Functional Nuclear Localization Signals and Dynamic Changes in Glypican During the Cell Cycle , 1997, The Journal of cell biology.

[15]  R. U. Margolis,et al.  Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding , 1997, Cell and Tissue Research.

[16]  J. Turnbull,et al.  Structural Modification of Fibroblast Growth Factor-binding Heparan Sulfate at a Determinative Stage of Neural Development* , 1998, The Journal of Biological Chemistry.

[17]  Alain Chédotal,et al.  Slit2-Mediated Chemorepulsion and Collapse of Developing Forebrain Axons , 1999, Neuron.

[18]  C. Goodman,et al.  Slit Is the Midline Repellent for the Robo Receptor in Drosophila , 1999, Cell.

[19]  Huaiyu Hu,et al.  Chemorepulsion of Neuronal Migration by Slit2 in the Developing Mammalian Forebrain , 1999, Neuron.

[20]  Sophie Dupuis,et al.  Directional guidance of neuronal migration in the olfactory system by the protein Slit , 1999, Nature.

[21]  Mu-ming Poo,et al.  A Ligand-Gated Association between Cytoplasmic Domains of UNC5 and DCC Family Receptors Converts Netrin-Induced Growth Cone Attraction to Repulsion , 1999, Cell.

[22]  M. Salmivirta,et al.  Selective Effects of Sodium Chlorate Treatment on the Sulfation of Heparan Sulfate* , 1999, The Journal of Biological Chemistry.

[23]  J. Jacobs,et al.  Axon repulsion from the midline of the Drosophila CNS requires slit function. , 1999, Development.

[24]  Y. Rao,et al.  Vertebrate Slit, a Secreted Ligand for the Transmembrane Protein Roundabout, Is a Repellent for Olfactory Bulb Axons , 1999, Cell.

[25]  C. Goodman,et al.  Biochemical Purification of a Mammalian Slit Protein as a Positive Regulator of Sensory Axon Elongation and Branching , 1999, Cell.

[26]  C. Goodman,et al.  Slit Proteins Bind Robo Receptors and Have an Evolutionarily Conserved Role in Repulsive Axon Guidance , 1999, Cell.

[27]  S. Carr,et al.  Mammalian Homologues of the Drosophila Slit Protein Are Ligands of the Heparan Sulfate Proteoglycan Glypican-1 in Brain* , 1999, The Journal of Biological Chemistry.

[28]  Marc Tessier-Lavigne,et al.  Squeezing Axons Out of the Gray Matter A Role for Slit and Semaphorin Proteins from Midline and Ventral Spinal Cord , 2000, Cell.

[29]  Nicholas J. Cowan,et al.  Adp Ribosylation Factor-like Protein 2 (Arl2) Regulates the Interaction of Tubulin-Folding Cofactor D with Native Tubulin , 2000, The Journal of cell biology.

[30]  C. Goodman,et al.  Slit Inhibition of Retinal Axon Growth and Its Role in Retinal Axon Pathfinding and Innervation Patterns in the Diencephalon , 2000, The Journal of Neuroscience.

[31]  S. Niclou,et al.  Slit2 Is a Repellent for Retinal Ganglion Cell Axons , 2000, The Journal of Neuroscience.

[32]  L Erskine,et al.  Retinal Ganglion Cell Axon Guidance in the Mouse Optic Chiasm: Expression and Function of Robos and Slits , 2000, The Journal of Neuroscience.

[33]  M. Tessier-Lavigne,et al.  Slit proteins: key regulators of axon guidance, axonal branching, and cell migration , 2000, Current Opinion in Neurobiology.