Construction of mutually unbiased bases in ℂd⊗ℂ2ld'

We study mutually unbiased bases in $${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^{l}d'}$$Cd?C2ld?. A systematic way of constructing mutually unbiased maximally entangled bases (MUMEBs) in $${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^{l}d'} (l\in {\mathbb {Z}}^{+})$$Cd?C2ld?(l?Z+) from MUMEBs in $${\mathbb {C}}^d \otimes {\mathbb {C}}^{d'}(d'=kd, k\in {\mathbb {Z}}^+)$$Cd?Cd?(d?=kd,k?Z+) and a general approach to construct mutually unbiased unextendible maximally entangled bases (MUUMEBs) in $${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^ld'} (l \in {\mathbb {Z}}^{+})$$Cd?C2ld?(l?Z+) from MUUMEBs in $${\mathbb {C}}^d \otimes {\mathbb {C}}^{d'}(d'=kd+r, 0

[1]  A. Zeilinger,et al.  Entanglement in mutually unbiased bases , 2011, 1102.2080.

[2]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[3]  Iordanis Kerenidis,et al.  Optimal bounds for parity-oblivious random access codes , 2014, TQC.

[4]  G. Björk,et al.  Chapter 7 The discrete Wigner function , 2008 .

[5]  Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem , 2004, quant-ph/0410117.

[6]  Sergio Albeverio,et al.  Optimal teleportation based on bell measurements , 2002, quant-ph/0208015.

[7]  Shao-Ming Fei,et al.  A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in ℂ2⊗ℂ3$\mathbb {C}^{2}\bigotimes \mathbb {C}^{3}$ , 2015, 1501.05503.

[8]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[9]  S. Goyal,et al.  Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases , 2013, 1402.5810.

[10]  Stefan Weigert,et al.  All mutually unbiased bases in dimensions two to five , 2009, Quantum Inf. Comput..

[11]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[12]  G. M. Nikolopoulos,et al.  Security bound of two-basis quantum-key-distribution protocols using qudits (10 pages) , 2005, quant-ph/0507221.

[13]  Stefan Weigert,et al.  All mutually unbiased product bases in dimension 6 , 2012 .

[14]  Bin Chen,et al.  Unextendible maximally entangled bases and mutually unbiased bases , 2013 .

[15]  Apostolos Vourdas,et al.  Quantum systems with finite Hilbert space , 2004 .

[16]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[17]  W. M. Liu,et al.  Mixed maximally entangled states , 2012, Quantum Inf. Comput..

[18]  M. Revzen Maximal entanglement, collective coordinates and tracking the King , 2012, 1209.1704.

[19]  T. Wei,et al.  Beating the channel capacity limit for linear photonic superdense coding , 2008 .

[20]  Jaroslaw Adam Miszczak,et al.  Increasing the security of the ping–pong protocol by using many mutually unbiased bases , 2012, Quantum Inf. Process..

[21]  Iulia Ghiu,et al.  Generation of all sets of mutually unbiased bases for three-qubit systems , 2013, 1312.2875.

[22]  C. Saavedra,et al.  Quantum process reconstruction based on mutually unbiased basis , 2011, 1104.2888.

[23]  Satoshi Ishizaka,et al.  Quantum teleportation scheme by selecting one of multiple output ports , 2009, 0901.2975.

[24]  Shao-Ming Fei,et al.  Mutually unbiased maximally entangled bases in $$\mathbb {C}^d\otimes \mathbb {C}^{kd}$$Cd⊗Ckd , 2015 .