A cellular automata model for simulating grain structures with straight and hyperbolic interfaces

[1]  A. Ramirez,et al.  Randomly grain growth in metallic materials , 2009 .

[2]  Yun-tao Li,et al.  Modeling austenite decomposition into ferrite at different cooling rate in low-carbon steel with cellular automaton method , 2004 .

[3]  Y. Hayashi,et al.  Crystal growth and its morphology in the mushy zone , 2004 .

[4]  T. DebRoy,et al.  Measurements and Monte Carlo simulation of grain growth in the heat-affected zone of Ti–6Al–4V welds , 2004 .

[5]  Yiyi Li,et al.  Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method , 2004 .

[6]  Shaoqing Wang,et al.  A cellular automaton investigation of the transformation from austenite to ferrite during continuous cooling , 2003 .

[7]  I. Nettleship,et al.  The simulation and selection of shapes for the unfolding of grain size distributions , 2003 .

[8]  Peter D. Lee,et al.  A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection , 2003 .

[9]  S. L. Semiatin,et al.  3D Monte-Carlo simulation of texture-controlled grain growth , 2003 .

[10]  Mark Miodownik,et al.  On abnormal subgrain growth and the origin of recrystallization nuclei , 2002 .

[11]  W. Feng,et al.  Microstructure simulation of aluminum alloy using parallel computing technique : Casting and Solidiflcation , 2002 .

[12]  C. P. Hong,et al.  Modeling of Dendritic Growth with Convection Using a Modified Cellular Automaton Model with a Diffuse Interface , 2002 .

[13]  K. Lee,et al.  Stochastic Modeling of Solidification Grain Structures of Al-Cu Crystalline Ribbons in Planar Flow Casting , 1997 .

[14]  M. Flemings Solidification processing , 1974, Metallurgical and Materials Transactions B.

[15]  C. W. Lanab,et al.  Adaptive phase field simulation of non-isothermal free dendritic growth of a binary alloy , 2003 .