Optimal Solar Geometry Definition for Global Long-Term Landsat Time-Series Bidirectional Reflectance Normalization

The systematic generation of global Landsat time-series products has been advocated, and studies have suggested the need to minimize Landsat reflectance anisotropy effects. Considering a global year of non-Antarctic Landsat 5 and 7 acquisitions, the scene center solar zenith varied from 22.14° to 89.71°, with a mean of 43.23°. However, a solar zenith angle definition suitable for generation of global bidirectional reflectance normalized Landsat time series has not been considered. In this paper, a solar zenith optimal definition is developed in terms of the following criteria: i) ensuring that it can be modeled for any location and date; ii) ensuring that it is constant or smoothly changing with respect to space and time and has global annual variation no greater than the variation in the observed Landsat solar zenith angles $(\theta_{s})$ ; and iii) minimizing the differences between $\theta_{s}$ and the solar zenith angle used for normalization. Global coverage Landsat data are used to evaluate four solar zenith angle definitions, namely, fixed solar zenith angles, i.e., $(\theta_{\mathrm{fixed}})$ , the solar zenith at local solar noon, i.e., $(\theta_{\mathrm{solar\ noon}})$ , the solar zenith at the global mean Landsat overpass time, i.e., $(\theta_{\mathrm{mean\ overpass\ time}})$ , and the solar zenith at a latitude-varying local time parameterized by a polynomial function of latitude, i.e., $(\theta_{\mathrm{poly\ overpass\ time}})$ , that effectively provides a model of $\theta_{s}$ . The optimal definition for global and long time-series Landsat bidirectional reflectance normalization is $(\theta_{\mathrm{poly\ overpass\ time}})$ . The polynomial coefficients are provided so that users may implement Landsat bidirectional reflectance normalization algorithms using this optimal solar geometry.

[1]  Neil Flood,et al.  Testing the local applicability of MODIS BRDF parameters for correcting Landsat TM imagery , 2013 .

[2]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[3]  Zhuosen Wang,et al.  Angular Effects and Correction for Medium Resolution Sensors to Support Crop Monitoring , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  W. Lucht Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling , 1998 .

[5]  David P. Roy,et al.  Land surface hot-spot observed by MODIS over Central Africa , 2002 .

[6]  Joanne C. White,et al.  Pixel-Based Image Compositing for Large-Area Dense Time Series Applications and Science , 2014 .

[7]  H. Rahman,et al.  Coupled surface-atmosphere reflectance (CSAR) model: 2. Semiempirical surface model usable with NOAA advanced very high resolution radiometer data , 1993 .

[8]  William C. Snyder Reciprocity of the bidirectional reflectance distribution function (BRDF) in measurements and models of structured surfaces , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  David P. Roy,et al.  The Global Availability of Landsat 5 TM and Landsat 7 ETM+ Land Surface Observations and Implications for Global 30m Landsat Data Product Generation , 2013 .

[10]  R. Bindschadler,et al.  The Landsat Image Mosaic of Antarctica , 2008 .

[11]  E. Vermote,et al.  Measuring the Directional Variations of Land Surface Reflectance From MODIS , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Shanti Reddy,et al.  An Evaluation of the Use of Atmospheric and BRDF Correction to Standardize Landsat Data , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[13]  David P. Roy,et al.  MODIS land data storage, gridding, and compositing methodology: Level 2 grid , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  Yanmin Shuai,et al.  Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: Dependence of albedo on solar zenith angle , 2009 .

[15]  D. Roy,et al.  Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States , 2010 .

[16]  Darrel L. Williams,et al.  Landsat-7 Long-Term Acquisition Plan: Development and Validation , 2006 .

[17]  Alexander A. Kokhanovsky,et al.  Validation of an Analytical Snow BRDF Model Using PARASOL Multi-Angular and Multispectral Observations , 2012, IEEE Geoscience and Remote Sensing Letters.

[18]  Teodoro López-Moratalla,et al.  Computing the solar vector , 2001 .

[19]  Neil Flood,et al.  An Operational Scheme for Deriving Standardised Surface Reflectance from Landsat TM/ETM+ and SPOT HRG Imagery for Eastern Australia , 2013, Remote. Sens..

[20]  John L. Dwyer,et al.  Landsat: building a strong future , 2012 .

[21]  Kalle Ruokolainen,et al.  Across-path DN gradient in Landsat TM imagery of Amazonian forests: A challenge for image interpretation and mosaicking , 2006 .

[22]  Stephen V. Stehman,et al.  International Journal of Applied Earth Observation and Geoinformation: Time-Series Analysis of Multi-Resolution Optical Imagery for Quantifying Forest Cover Loss in Sumatra and Kalimantan, Indonesia , 2011 .

[23]  Santiago R. Verón,et al.  Comparison of different BRDF correction methods to generate daily normalized MODIS 250 m time series , 2014 .

[24]  David P. Roy,et al.  The Global Impact of Clouds on the Production of MODIS Bidirectional Reflectance Model-Based Composites for Terrestrial Monitoring , 2006, IEEE Geoscience and Remote Sensing Letters.

[25]  T. Painter,et al.  Reflectance quantities in optical remote sensing - definitions and case studies , 2006 .

[26]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[27]  K. Kriebel,et al.  On the limited validity of reciprocity in measured BRDFs , 1996 .

[28]  M. Leroy,et al.  Surface bidirectional reflectance distribution function observed at global scale by POLDER/ADEOS , 1998 .

[29]  Alan H. Strahler,et al.  Improving MODIS surface BRDF/Albedo retrieval with MISR multiangle observations , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  D. Roy,et al.  A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin , 2008 .

[31]  J. L. Barker,et al.  Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets , 2001 .

[32]  Wolfgang Lucht,et al.  Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling , 2000 .

[33]  Christopher Justice,et al.  Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[34]  David P. Roy,et al.  Generation of Temporally Complete Daily Nadir MODIS Reflectance Time Series , 2010 .

[35]  D. Roy,et al.  Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data , 2008 .