Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators
暂无分享,去创建一个
[1] On the number of square integrable solutions and self-adjointness of symmetric first order systems of differential equations , 2000, math/0012080.
[2] L. Dickey. Soliton Equations and Hamiltonian Systems , 2003 .
[3] L. Amour. Inverse spectral theory for the AKNS system with separated boundary conditions , 1993 .
[4] Russell Johnson,et al. The algebraic-geometric AKNS potentials , 1987, Ergodic Theory and Dynamical Systems.
[5] A new approach to inverse spectral theory, III. Short-range potentials , 2000 .
[6] W. Goldberg. On the determination of a Hill's equation from its spectrum , 1974 .
[7] B. Dubrovin,et al. Matrix finite-zone operators , 1985 .
[8] J. K. Shaw,et al. Hamiltonian systems of limit point or limit circle type with both endpoints singular , 1983 .
[9] B. M. Levitan,et al. Introduction to spectral theory : selfadjoint ordinary differential operators , 1975 .
[10] V. I. Kogan,et al. 1.—On Square-integrable Solutions of Symmetric Systems of Differential Equations of Arbitrary Order. , 1976, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[11] A. S. Meligy,et al. On the function , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] F. Gesztesy,et al. A CHARACTERIZATION OF ALL ELLIPTIC SOLUTIONS OF THE AKNS HIERARCHY , 1997, solv-int/9705018.
[13] B. Harris. The asymptotic form of the Titchmarsh-Weyl m-function associated with a Dirac system , 1985 .
[14] B. Simon,et al. Absolute summability of the trace relation for certain Schrödinger operators , 1995 .
[15] J. K. Shaw,et al. ON THE SPECTRUM OF A SINGULAR HAMILTONIAN SYSTEM , 1982 .
[16] C. Tretter,et al. Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter , 2001 .
[17] F. Gesztesy. Some applications of commutation methods , 1989 .
[18] V. Marchenko. Sturm-Liouville Operators and Applications , 1986 .
[19] J. K. Shaw,et al. The Asymptotic Form of the Titchmarsh‐Weyl Coefficient for Dirac Systems , 1983 .
[20] P. Deift,et al. The Absolutely Continuous Spectrum in One Dimension , 1983 .
[21] J. Guillot,et al. Isospectral sets for akns systems on the unit interval with generalized periodic boundary conditions , 1996 .
[22] F. Gesztesy,et al. On Matrix–Valued Herglotz Functions , 1997, funct-an/9712004.
[23] The Spectral Shift Operator , 1999, math/9901112.
[24] F. Gesztesy,et al. On Local Borg–Marchenko Uniqueness Results , 2000 .
[25] L. Sakhnovich. Evolution of spectral data and nonlinear equations , 1988 .
[26] B. Grébert. Inverse scattering for the Dirac operator on the real line , 1992 .
[27] R. Carey. A unitary invariant for pairs of self-adjoint operators. , 1976 .
[28] I. Gohberg,et al. Matrix and Operator Valued Functions: The Vladimir Petrovich Potapov Memorial Volume , 1994 .
[29] M. Malamud,et al. The Inverse Spectral Problem for First Order Systems on the Half Line , 1998, math/9805033.
[30] Lev A. Sakhnovich,et al. Spectral Theory of Canonical Differential Systems. Method of Operator Identities , 1999 .
[31] Fritz Gesztesy,et al. An Addendum to Krein's Formula , 1997 .
[32] Y. Manin. Matrix solitons and bundles over curves with singularities , 1978 .
[33] F. V. Atkinson,et al. Discrete and Continuous Boundary Problems , 1964 .
[34] J. K. Shaw,et al. Series representation and asymptotics for Titchmarsh-Weyl $m$-functions , 1989, Differential and Integral Equations.
[35] H. Weyl,et al. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen , 1910 .
[36] Some Applications of Operator-Valued Herglotz Functions , 1998, math/9802103.
[37] G. Pólya,et al. Problems and theorems in analysis , 1983 .
[38] Helge Holden,et al. Borg-Type Theorems for Matrix-Valued Schrödinger Operators , 1999 .
[39] M. Kreĭn,et al. Stability of Solutions of Differential Equations in Banach Spaces , 1974 .
[40] The Ξ operator and its relation to Krein's spectral shift function , 1999, math/9904050.
[41] Y. Kato,et al. Algebraic and Spectral Methods for Nonlinear Wave Equations , 1990 .
[42] J. Moser,et al. The rotation number for almost periodic potentials , 1983 .
[43] G. Pólya,et al. Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions , 1976 .
[44] L. Sakhnovich. Inverse problems for equations systems , 1994 .
[45] H. Dym,et al. J-inner matrix functions, interpolation and inverse problems for canonical systems, III: More on the inverse monodromy problem , 2000 .
[46] Levitan,et al. Sturm―Liouville and Dirac Operators , 1990 .
[47] Göran Borg. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .
[48] F. Atkinson. On the asymptotic behaviour of the Titchmarsh-Weyl m-coefficient and the spectral function for scalar second-order differential expressions , 1982 .
[49] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[50] F. Atkinson. On the order of magnitude of Titchmarsh-Weyl functions , 1988 .
[51] F. Gesztesy,et al. A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy , 1998 .
[52] M. Krishna,et al. Almost Periodicity of Some Random Potentials , 1988 .
[53] Boris Dubrovin,et al. Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties , 1977 .
[54] W. N. Everitt. On a Property of the M -Coefficient of a Secondorder Linear Differential Equation , 1972 .
[55] N. S. Barnett,et al. Private communication , 1969 .
[56] B. Simon,et al. HIGHER ORDER TRACE RELATIONS FOR SCHRÖDINGER OPERATORS , 1995 .
[57] A. Sakhnovich. Canonical systems and transfer matrix-functions , 1997 .
[58] Christer Bennewitz,et al. A Proof of the Local Borg–Marchenko Theorem , 2001 .
[59] H. Dym,et al. J-inner matrix functions, interpolation and inverse problems for canonical systems, I: Foundations , 1997 .
[60] M. Malamud. Borg type theorems for first-order systems on a finite interval , 1999 .
[61] H. Holden,et al. ON TRACE FORMULAS FOR SCHRODINGER-TYPE OPERATORS , 1997 .
[62] T. Misyura. An asymptotic formula for Weyl solutions of the Dirac equations , 1995 .
[63] Russell Johnson. m-functions and Floquet exponents for linear differential systems , 1987 .
[64] A Trace Formula for One-Dimensional Dirac Operators , 2001 .
[65] Alexei Rybkin,et al. On the Trace Approach to the Inverse Scattering Problem in Dimension One , 2001, SIAM J. Math. Anal..
[66] J. K. Shaw,et al. Asymptotic phase, asymptotic modulus, and Titchmarsh-Weyl coefficient for a Dirac system , 1989 .
[67] A. Sakhnovich,et al. SPECTRAL FUNCTIONS OF A CANONICAL SYSTEM OF ORDER $ 2n$ , 1992 .
[68] B. Simon,et al. Stochastic Schrödinger operators and Jacobi matrices on the strip , 1988 .
[69] A. Offord. Introduction to the Theory of Fourier Integrals , 1938, Nature.
[70] N. Aronszajn,et al. On exponential representations of analytic functions in the upper half-plane with positive imaginary part , 1956 .
[71] B. Grébert,et al. Gaps of One-Dimensional Periodic AKNS Systems , 1993 .
[72] Steve Clark,et al. Weyl-titchmarsh M -function Asymptotics for Matrix-valued Schr¨odinger Operators , 2022 .
[73] W. Craig. The trace formula for Schrödinger operators on the line , 1989 .
[74] V. Marchenko. Nonlinear Equations and Operator Algebras , 1987 .
[75] F. Gesztesy,et al. Uniqueness Results for Matrix-Valued Schrodinger, Jacobi, and Dirac-Type Operators , 2000 .
[76] Allan M. Krall,et al. M (λ) theory for singular Hamiltonian systems with two singular points , 1989 .
[77] J. K. Shaw,et al. Embedded Half‐Bound States for Potentials of Wigner‐Von Neumann Type , 1991 .
[78] B. Simon,et al. Commutation methods applied to the mKdV-equation , 1991 .
[79] G. Teschl,et al. On isospectral sets of Jacobi operators , 1996 .
[80] P. Yuditskii,et al. Almost periodic Sturm-Liouville operators with Cantor homogeneous spectrum , 1995 .
[81] J. K. Shaw,et al. Inverse scattering on the line for a Dirac system , 1991 .
[82] S. Clark. On the absolutely continuous spectrum of a vector-matrix Dirac system , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[83] Some Applications of the Spectral Shift Operator , 1999, math/9903186.
[84] B. Després. The Borg theorem for the vectorial Hill's equation , 1995 .
[85] P. Deift,et al. Almost periodic Schrödinger operators , 1983 .
[86] Russell Johnson. The recurrent Hill's equation , 1982 .
[87] R. Giachetti,et al. Spectral theory of second-order almost periodic differential operators and its relation to classes of nonlinear evolution equations , 1984 .
[88] Israel Michael Sigal,et al. Introduction to Spectral Theory , 1996 .
[89] H. Hochstadt. On the determination of a Hill's equation from its spectrum II , 1965 .
[90] Barry Simon,et al. A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.
[91] Barry Simon,et al. A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.
[92] Rafael Obaya,et al. Ergodic properties and Weyl M-functions for random linear Hamiltonian systems , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[93] S. Kotani. Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .
[94] F. Atkinson. On the location of the Weyl circles , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[95] J. Weidmann. Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen , 1971 .
[96] Albert Schneider,et al. On the Titchmarsh‐Weyl Coefficients for Singular S‐Hermitian Systems II , 1993 .
[97] 加藤 祐輔,et al. Algebraic and spectral methods for nonlinear wave equations , 1990 .
[98] K. R. Prasad,et al. Upper and lower bounds for the solution of the general matrix Riccati differential equation , 1990 .
[99] H. Dym,et al. J-Inner matrix functions, interpolation and inverse problems for canonical systems, II: The inverse monodromy problem , 2000 .
[100] W. N. Everitt,et al. On the asymptotic form of the Titchmarsh-Weyl m-coefficient† , 1978 .
[101] J. K. Shaw,et al. On Boundary Value Problems for Hamiltonian Systems with Two Singular Points , 1984 .
[102] J. K. Shaw,et al. On Titchmarsh-Weyl M(λ)-functions for linear Hamiltonian systems , 1981 .
[103] B. Simon,et al. The xi function , 1996 .