A lattice Boltzmann method for immiscible two-phase Stokes flow with a local collision operator

We propose a lattice Boltzmann model for immiscible two-phase Stokes flow with a local collision operator. The model is based on two different lattice Boltzmann automata, one for the flow field and one for an indicator function for the two different phases. The model is described in detail and verified by the following test-cases: a static bubble for the surface tension, a closed capillary tube for the contact angle and two phase flow in a concentric annulus for the viscosity ratio. In the appendix an asymptotic analysis for the derivation of the two-phase Stokes equation is given.

[1]  Howard H. Hu,et al.  Lubricated pipelining: stability of core-annular flow. Part 2 , 1989, Journal of Fluid Mechanics.

[2]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[3]  Pierre M. Adler,et al.  Surface tension models with different viscosities , 1995 .

[4]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[5]  Jonas Tölke,et al.  Lattice Boltzmann simulations of binary fluid flow through porous media , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  C. Pan,et al.  Lattice‐Boltzmann simulation of two‐phase flow in porous media , 2004 .

[7]  D. d'Humières,et al.  Two-relaxation-time Lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions , 2008 .

[8]  Sauro Succi,et al.  Improved lattice boltzmann without parasitic currents for Rayleigh-Taylor instability , 2009 .

[9]  X. Shan Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Pablo M. Dupuy,et al.  of Statistical Mechanics : Theory and Experiment Fractional step two-phase flow lattice Boltzmann model implementation , 2009 .

[11]  Paul J. Dellar,et al.  A volume-preserving sharpening approach for the propagation of sharp phase boundaries in multiphase lattice Boltzmann simulations , 2011 .

[12]  Jens Harting,et al.  Contact angle determination in multicomponent lattice Boltzmann simulations , 2009, 0910.3915.

[13]  Marcus Herrmann,et al.  A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids , 2008, J. Comput. Phys..

[14]  P. Lallemand,et al.  Theory of the lattice boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Banavar,et al.  Two-color nonlinear Boltzmann cellular automata: Surface tension and wetting. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  A. A. Mohamad,et al.  The role of the kinetic parameter in the stability of two-relaxation-time advection-diffusion lattice Boltzmann schemes , 2011, Comput. Math. Appl..

[17]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[18]  P. Philippi,et al.  Lattice-Boltzmann model based on field mediators for immiscible fluids. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[20]  D. Rothman,et al.  Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Yan Peng,et al.  A lattice Boltzmann front-tracking method for interface dynamics with surface tension in two dimensions , 2007, J. Comput. Phys..

[22]  Haibo Huang,et al.  Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. Wagner,et al.  Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  C M Care,et al.  Lattice Boltzmann algorithm for continuum multicomponent flow. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  B. R. Sehgal,et al.  On lattice Boltzmann modeling of phase transition in an isothermal non-ideal fluid , 2002 .

[26]  Irina Ginzburg,et al.  Generic boundary conditions for lattice Boltzmann models and their application to advection and anisotropic dispersion equations , 2005 .

[27]  P. Adler,et al.  Electrical Resistivity Index in Multiphase Flow through Porous Media , 2003 .

[28]  Irina Ginzburg,et al.  Lattice Boltzmann modeling with discontinuous collision components: Hydrodynamic and Advection-Diffusion Equations , 2007 .

[29]  Li-Shi Luo,et al.  Lattice Boltzmann model for binary mixtures. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Pierre M. Adler,et al.  Binary two-phase flow with phase change in porous media , 2001 .

[31]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[32]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[33]  Manfred Krafczyk,et al.  TeraFLOP computing on a desktop PC with GPUs for 3D CFD , 2008 .

[34]  S. Chapman,et al.  On the Law of Distribution of Molecular Velocities, and on the Theory of Viscosity and Thermal Conduction, in a Non-Uniform Simple Monatomic Gas , 1916 .

[35]  J. Timonen,et al.  Lattice-Boltzmann Simulation of Capillary Rise Dynamics , 2002 .

[36]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[37]  Michihisa Tsutahara,et al.  Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel , 2008 .

[38]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[39]  D. J. Torres,et al.  On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method , 2002 .

[40]  Victor Sofonea,et al.  Reduction of Spurious Velocity in Finite Difference Lattice Boltzmann Models for Liquid-Vapor Systems , 2003 .

[41]  C. Pooley,et al.  Eliminating spurious velocities in the free-energy lattice Boltzmann method. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Li-Shi Luo,et al.  Unified Theory of Lattice Boltzmann Models for Nonideal Gases , 1998 .

[43]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[44]  D. d'Humières,et al.  Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme , 2008 .

[45]  L. Luo,et al.  Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Daniel H. Rothman,et al.  Lattice-Boltzmann simulations of flow through Fontainebleau sandstone , 1995 .

[47]  Takaji Inamuro,et al.  Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number , 1997 .

[48]  Alexander J. Wagner The Origin of Spurious Velocities in Lattice Boltzmann , 2003 .

[49]  A.J. Briant Lattice Boltzmann simulations of contact line motion in a liquid-gas system , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  D. d'Humières,et al.  Thirteen-velocity three-dimensional lattice Boltzmann model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Stefan Donath Wetting Models for a Parallel High-Performance Free Surface Lattice Boltzmann Method , 2011 .

[52]  D. d'Humières,et al.  Optimal Stability of Advection-Diffusion Lattice Boltzmann Models with Two Relaxation Times for Positive/Negative Equilibrium , 2010 .

[53]  S V Lishchuk,et al.  Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[55]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[56]  G. Wittum,et al.  Two-Phase Flows on Interface Refined Grids Modeled with VOF, Staggered Finite Volumes, and Spline Interpolants , 2001 .

[57]  I. Halliday,et al.  A local lattice Boltzmann method for multiple immiscible fluids and dense suspensions of drops , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  Pierre M. Adler,et al.  Dispersion in multiphase flow through porous media , 2002 .

[59]  Zhaoli Guo,et al.  Lattice Boltzmann model for incompressible flows through porous media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Daniel D. Joseph,et al.  Instability of the flow of two immiscible liquids with different viscosities in a pipe , 1983, Journal of Fluid Mechanics.

[61]  Chen,et al.  Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  I. Halliday,et al.  Dynamic wetting boundary condition for continuum hydrodynamics with multi-component lattice Boltzmann equation simulation method , 2011 .

[63]  Raoyang Zhang,et al.  A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability , 1998 .

[64]  Daniel H. Rothman,et al.  Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics , 1997 .

[65]  I. Ginzburg,et al.  Two-relaxation-times Lattice Boltzmann schemes for solute transport in unsaturated water flow, with a focus on stability , 2011 .

[66]  Dirk Kehrwald,et al.  Numerical Analysis of Immiscible Lattice BGK , 2002 .

[67]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[68]  Ali Q. Raeini,et al.  Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method , 2012, J. Comput. Phys..

[69]  D. Rothman,et al.  Scaling of dynamic contact angles in a lattice-Boltzmann model. , 2007, Physical review letters.

[70]  Pierre M. Adler,et al.  Real Porous Media: Local Geometry and Macroscopic Properties , 1998 .

[71]  P. Fischer,et al.  Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  M. Krafczyk,et al.  An adaptive scheme using hierarchical grids for lattice Boltzmann multi-phase flow simulations , 2006 .

[73]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[74]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[75]  Shiyi Chen,et al.  A lattice Boltzmann model for multiphase fluid flows , 1993, comp-gas/9303001.

[76]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[77]  Dominique d'Humières,et al.  Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to "magic" collision numbers , 2009, Comput. Math. Appl..

[78]  Vassilios C. Kelessidis,et al.  Modeling flow pattern transitions for upward gas-liquid flow in vertical concentric and eccentric annuli , 1989 .

[79]  Luigi Preziosi,et al.  Lubricated pipelining: stability of core-annular flow , 1989, Journal of Fluid Mechanics.

[80]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[81]  Andre Peters,et al.  Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model , 2008 .

[82]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[83]  D. Rothman,et al.  Static contact angle in lattice Boltzmann models of immiscible fluids. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.