Quantization, orbifold cohomology, and Cherednik algebras

We compute the Hochschild homology of the crossed product $\Bbb C[S_n]\ltimes A^{\otimes n}$ in terms of the Hochschild homology of the associative algebra $A$ (over $\Bbb C$). It allows us to compute the Hochschild (co)homology of $\Bbb C[W]\ltimes A^{\otimes n}$ where $A$ is the $q$-Weyl algebra or any its degeneration and $W$ is the Weyl group of type $A_{n-1}$ or $B_n$. For a deformation quantization $A_+$ of an affine symplectic variety $X$ we show that the Hochschild homology of $S^n A$, $A=A_+[\hbar^{-1}]$ is additively isomorphic to the Chen-Ruan orbifold cohomology of $S^nX$ with coefficients in $\Bbb C((\hbar))$. We prove that for $X$ satisfying $H^1(X,\Bbb C)=0$ (or $A\in VB(d)$) the deformation of $S^nX$ ($\Bbb C[S_n]\ltimes A^{\otimes n}$) which does not come from deformations of $X$ ($A$) exists if and only if $\dim X=2$ ($d=2$). In particular if $A$ is $q$-Weyl algebra (its trigonometric or rational degeneration) then the corresponding nontrivial deformations yield the double affine Hecke algebras of type $A_{n-1}$ (its trigonometric or rational versions) introduced by Cherednik.

[1]  J. T. Stafford,et al.  Sklyanin algebras and Hilbert schemes of points , 2003, math/0310045.

[2]  A. Oblomkov Double affine Hecke algebras of rank 1 and affine cubic surfaces , 2003, math/0306393.

[3]  V. Ginzburg,et al.  Poisson deformations of symplectic quotient singularities , 2002, math/0212279.

[4]  B. Uribe Orbifold Cohomology of the Symmetric Product , 2001, math/0109125.

[5]  M. Kontsevich Deformation Quantization of Algebraic Varieties , 2001, math/0106006.

[6]  G. Wilson,et al.  Ideal Classes of the Weyl Algebra and Noncommutative Projective Geometry , 2001, math/0104248.

[7]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[8]  V. Ginzburg,et al.  Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000, math/0011114.

[9]  Jacques Alev,et al.  Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini☆☆☆ , 2000 .

[10]  V. Batyrev Non-Archimedean integrals and stringy Euler numbers of log-terminal pairs , 1998, math/9803071.

[11]  Michel Van den Bergh,et al.  A RELATION BETWEEN HOCHSCHILD HOMOLOGY AND COHOMOLOGY FOR GORENSTEIN RINGS , 1998 .

[12]  S. Sahi Nonsymmetric Koornwinder polynomials and duality , 1997, q-alg/9710032.

[13]  M. Kontsevich Deformation Quantization of Poisson Manifolds , 1997, q-alg/9709040.

[14]  B. Tsygan,et al.  Algebraic index theorem , 1995 .

[15]  Ib Madsen,et al.  The cyclotomic trace and algebraic K-theory of spaces , 1993 .

[16]  L. Göttsche The Betti numbers of the Hilbert scheme of points on a smooth projective surface , 1990 .

[17]  Jean-Luc Brylinski,et al.  A differential complex for Poisson manifolds , 1988 .

[18]  S. Montgomery Fixed Rings of Finite Automorphism Groups of Associative Rings , 1980 .

[19]  T. Stafford,et al.  Simple Noetherian rings , 1979 .

[20]  R. Sridharan,et al.  Filtered algebras and representations of Lie algebras , 1961 .