Boosting stochastic problem solvers through online self-analysis of performance

In many combinatorial domains, simple stochastic algorithms often exhibit superior performance when compared to highly customized approaches. Many of these simple algorithms outperform more sophisticated approaches on difficult benchmark problems; and often lead to better solutions as the algorithms are taken out of the world of benchmarks and into the real-world. Simple stochastic algorithms are often robust, scalable problem solvers. This thesis explores methods for combining sets of heuristics within a single stochastic search. The ability of stochastic search to amplify heuristics is often a key factor in its success. Heuristics are not, however, infallible and in most domains no single heuristic dominates. It is therefore desirable to gain the collective power of a set of heuristics; and to design a search control framework capable of producing a hybrid algorithm from component heuristics with the ability to customize itself to a given problem instance. A primary goal is to explore what can be learned from quality distributions of iterative stochastic search in combinatorial optimization domains; and to exploit models of quality distributions to enhance the performance of stochastic problem solvers. We hypothesize that models of solution quality can lead to effective search control mechanisms, providing a general framework for combining multiple heuristics into an enhanced decision-making process. These goals lead to the development of a search control framework, called QD-BEACON, that uses online-generated statistical models of search performance to effectively combine search heuristics. A prerequisite goal is to develop a suitable stochastic sampling algorithm for combinatorial search problems. This goal leads to the development of an algorithm called VBSS that makes better use, in general, of the discriminatory power of a given search heuristic as compared to existing sampling approaches. The search frameworks of this thesis are evaluated on combinatorial optimization problems. Specifically, we show that: (1) VBSS is an effective method for amplifying heuristic performance for the weighted tardiness sequencing problem with sequence-dependent setups; (2) QD-BEACON can enhance the current best known algorithm for weighted tardiness sequencing; and (3) QD-BEACON and VBSS together provide the new best heuristic algorithm for the constrained optimization problem known as RCPSP/max.

[1]  Bart Selman,et al.  Heavy-Tailed Distributions in Combinatorial Search , 1997, CP.

[2]  Luca Maria Gambardella,et al.  HAS-SOP: Hybrid Ant System for the Sequential Ordering Problem , 1997 .

[3]  Bart Selman,et al.  Formal Models of Heavy-Tailed Behavior in Combinatorial Search , 2001, CP.

[4]  Lynne E. Parker,et al.  Multi-Robot Systems: From Swarms to Intelligent Automata , 2002, Springer Netherlands.

[5]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[6]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[7]  Stephen F. Smith,et al.  A Distributed Layered Architecture for Mobile Robot Coordination: Application to Space Exploration , 2002 .

[8]  Peter Ross,et al.  Hyper-heuristics: Learning To Combine Simple Heuristics In Bin-packing Problems , 2002, GECCO.

[9]  Shlomo Zilberstein,et al.  Operational Rationality through Compilation of Anytime Algorithms , 1995, AI Mag..

[10]  Anthony Stentz,et al.  Market-Based Multi-Robot Planning in a Distributed Layered Architecture , 2003 .

[11]  A. Rosenfeld,et al.  IEEE TRANSACTIONS ON SYSTEMS , MAN , AND CYBERNETICS , 2022 .

[12]  Stephen F. Smith,et al.  Modeling GA Performance for Control Parameter Optimization , 2000, GECCO.

[13]  Toby Walsh,et al.  Local Search and the Number of Solutions , 1996, CP.

[14]  Ujjwal Maulik,et al.  Clustering Using Annealing Evolution: Application to Pixel Classification of Satellite Images , 2002, ICVGIP.

[15]  S. Wu,et al.  GENETIC ALGORITHMS FOR NONLINEAR MIXED DISCRETE-INTEGER OPTIMIZATION PROBLEMS VIA META-GENETIC PARAMETER OPTIMIZATION , 1995 .

[16]  Donald A. Berry,et al.  Bandit Problems: Sequential Allocation of Experiments. , 1986 .

[17]  Mark S. Boddy,et al.  Solving Time-Dependent Planning Problems , 1989, IJCAI.

[18]  Stephen F. Smith,et al.  Stochastic Procedures for Generating Feasible Schedules , 1997, AAAI/IAAI.

[19]  David W. Hildum,et al.  Interactive Resource Management in the COMIREM Planner , 2003 .

[20]  E. Bonabeau,et al.  Fixed response thresholds and the regulation of division of labor in insect societies , 1998 .

[21]  Corso Elvezia,et al.  Ant colonies for the traveling salesman problem , 1997 .

[22]  Aggelos K. Katsaggelos,et al.  SPECT Image Reconstruction Using Compound Prior Models , 2002, Int. J. Pattern Recognit. Artif. Intell..

[23]  Andrew J. Parkes,et al.  Clustering at the Phase Transition , 1997, AAAI/IAAI.

[24]  Mark F. Bramlette Initialization, Mutation and Selection Methods in Genetic Algorithms for Function Optimization , 1991, ICGA.

[25]  G. Theraulaz,et al.  Response threshold reinforcements and division of labour in insect societies , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  Amitava Bagchi,et al.  Graph Search Methods for Non-Order-Preserving Evaluation Functions: Applications to Job Sequencing Problems , 1996, Artif. Intell..

[27]  Graham Kendall,et al.  An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[28]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[29]  Adele E. Howe,et al.  Exploiting Competitive Planner Performance , 1999, ECP.

[30]  Mark S. Boddy,et al.  Deliberation Scheduling for Problem Solving in Time-Constrained Environments , 1994, Artif. Intell..

[31]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[32]  K. Dejong,et al.  An Analysis Of The Behavior Of A Class Of Genetic Adaptive Systems , 1975 .

[33]  L. Darrell Whitley,et al.  Problem difficulty for tabu search in job-shop scheduling , 2003, Artif. Intell..

[34]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[35]  P. Langley Systematic and nonsystematic search strategies , 1992 .

[36]  David Harel,et al.  Drawing graphs nicely using simulated annealing , 1996, TOGS.

[37]  Richard E. Korf,et al.  Improved Limited Discrepancy Search , 1996, AAAI/IAAI, Vol. 1.

[38]  Ram Rachamadugu,et al.  Real-time scheduling of an automated manufacturing center * , 1989 .

[39]  T. Sandholm,et al.  Costly valuation computation in auctions , 2001 .

[40]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[41]  S. Shieber,et al.  Adaptive tree search , 2002 .

[42]  Chris N. Potts,et al.  Single Machine Tardiness Sequencing Heuristics , 1991 .

[43]  Thomas Stützle,et al.  An Ant Approach to the Flow Shop Problem , 1998 .

[44]  Andrew W. Moore,et al.  Rapid Evaluation of Multiple Density Models , 2003, AISTATS.

[45]  L. Darrell Whitley,et al.  Algorithm Performance and Problem Structure for Flow-shop Scheduling , 1999, AAAI/IAAI.

[46]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[47]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[48]  Bart Selman,et al.  Local search strategies for satisfiability testing , 1993, Cliques, Coloring, and Satisfiability.

[49]  Eric Horvitz,et al.  Reasoning under Varying and Uncertain Resource Constraints , 1988, AAAI.

[50]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[51]  Richard F. Hartl,et al.  An ant colony optimization approach for the single machine total tardiness problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[52]  Sanjay Sachdev,et al.  Explorations in Asynchronous Teams , 1998 .

[53]  Thomas E. Morton,et al.  Heuristic scheduling systems : with applications to production systems and project management , 1993 .

[54]  Christoph Schwindt,et al.  Generation of Resource-Constrained Project Scheduling Problems with Minimal and Maximal Time Lags , 1998 .

[55]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[56]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[57]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[58]  Bart Selman,et al.  Heavy-Tailed Phenomena in Satisfiability and Constraint Satisfaction Problems , 2000, Journal of Automated Reasoning.

[59]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[60]  Alexander Nareyek,et al.  Choosing search heuristics by non-stationary reinforcement learning , 2004 .

[61]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[62]  Graham Kendall,et al.  An adaptive Length chromosome Hyper-Heuristic Genetic Algorithm for a Trainer Scheduling Problem , 2002, SEAL.

[63]  Bart Selman,et al.  Algorithm Portfolio Design: Theory vs. Practice , 1997, UAI.

[64]  Richard E. Korf Linear-Space Best-First Search: Summary of Results , 1992, AAAI.

[65]  Thomas E. Morton,et al.  Myopic Heuristics for the Single Machine Weighted Tardiness Problem , 1982 .

[66]  Alan Smaill,et al.  Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..

[67]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[68]  Stephen F. Smith,et al.  Ant colony control for autonomous decentralized shop floor routing , 2001, Proceedings 5th International Symposium on Autonomous Decentralized Systems.

[69]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[70]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[71]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[72]  B. Silverman,et al.  Algorithm AS 176: Kernel Density Estimation Using the Fast Fourier Transform , 1982 .

[73]  Rama Akkiraju,et al.  Asynchronous Teams , 2003, Handbook of Metaheuristics.

[74]  Tuomas Sandholm,et al.  Bargaining with limited computation: Deliberation equilibrium , 2001, Artif. Intell..

[75]  Chris N. Potts,et al.  An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem , 2002, INFORMS J. Comput..

[76]  K. De Jong Adaptive System Design: A Genetic Approach , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[77]  Holger H. Hoos,et al.  Characterizing the Run-time Behavior of Stochastic Local Search , 1998 .

[78]  Ben Paechter,et al.  An hyperheuristic approach to course timetabling problem using an evolutionary algorithm , .

[79]  Song-xi Chen,et al.  Probability Density Function Estimation Using Gamma Kernels , 2000 .

[80]  Hartmut Schmeck,et al.  Ant colony optimization for resource-constrained project scheduling , 2000, IEEE Trans. Evol. Comput..

[81]  Matthijs den Besten,et al.  Ant Colony Optimization for the Total Weighted Tardiness Problem , 2000, PPSN.

[82]  Chris N. Potts,et al.  A Branch and Bound Algorithm for the Total Weighted Tardiness Problem , 1985, Oper. Res..

[83]  Léon J. M. Rothkrantz,et al.  Ant-Based Load Balancing in Telecommunications Networks , 1996, Adapt. Behav..

[84]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[85]  Stephen F. Smith,et al.  Amplification of Search Performance through Randomization of Heuristics , 2002, CP.

[86]  Vincent A. Cicirello Intelligent Retrieval of Solid Models , 1999 .

[87]  Shlomo Zilberstein,et al.  Optimal Composition of Real-Time Systems , 1996, Artif. Intell..

[88]  John L. Bresina,et al.  Heuristic-Biased Stochastic Sampling , 1996, AAAI/IAAI, Vol. 1.

[89]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[90]  Q. Henry Wu,et al.  Optimization of control parameters in genetic algorithms: a stochastic approach , 1999, Int. J. Syst. Sci..

[91]  Guy Theraulaz,et al.  Adaptive Task Allocation Inspired by a Model of Division of Labor in Social Insects , 1997, BCEC.

[92]  Lajos Nagy,et al.  3G base station positioning using simulated annealing , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[93]  D. F. Wong,et al.  Simulated Annealing for VLSI Design , 1988 .

[94]  Stephen F. Smith,et al.  Wasp nests for self-configurable factories , 2001, AGENTS '01.

[95]  John L. Bresina,et al.  Expected Solution Quality , 1995, IJCAI.

[96]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.

[97]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[98]  P. Cowling,et al.  CHOICE FUNCTION AND RANDOM HYPERHEURISTICS , 2002 .

[99]  Michail G. Lagoudakis,et al.  Selecting the Right Algorithm , 2001 .

[100]  Andrew W. Moore,et al.  Learning Evaluation Functions for Global Optimization and Boolean Satisfiability , 1998, AAAI/IAAI.

[101]  Guy Theraulaz,et al.  Task differentiation in Polistes wasp colonies: a model for self-organizing groups of robots , 1991 .

[102]  Norman M. Sadeh,et al.  Learning to recognize (un)promising simulated annealing runs: Efficient search procedures for job shop scheduling and vehicle routing , 1997, Ann. Oper. Res..

[103]  U. Dorndorf,et al.  A Time-Oriented Branch-and-Bound Algorithm for Resource-Constrained Project Scheduling with Generalised Precedence Constraints , 2000 .

[104]  R. Bellman Dynamic programming. , 1957, Science.

[105]  Chris N. Potts,et al.  Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem , 1998, INFORMS J. Comput..

[106]  Eric Horvitz,et al.  Dynamic restart policies , 2002, AAAI/IAAI.

[107]  Graham Kendall,et al.  Hyperheuristics: A Robust Optimisation Method Applied to Nurse Scheduling , 2002, PPSN.

[108]  Olivier Scaillet,et al.  Density estimation using inverse and reciprocal inverse Gaussian kernels , 2004 .

[109]  Stephen F. Smith,et al.  An Iterative Sampling Procedure for Resource Constrained Project Scheduling with Time Windows , 1999, IJCAI.

[110]  Bart Selman,et al.  Systematic Versus Stochastic Constraint Satisfaction , 1995, IJCAI.

[111]  Stephen F. Smith,et al.  Wasp-like Agents for Distributed Factory Coordination , 2004, Autonomous Agents and Multi-Agent Systems.

[112]  Wheeler Ruml,et al.  Incomplete Tree Search using Adaptive Probing , 2001, IJCAI.

[113]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[114]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[115]  J. Hosking Maximum‐Likelihood Estimation of the Parameters of the Generalized Extreme‐Value Distribution , 1985 .

[116]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[117]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[118]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[119]  David Maxwell Chickering,et al.  A Bayesian Approach to Tackling Hard Computational Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..

[120]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[121]  Leslie Pack Kaelbling,et al.  Learning in embedded systems , 1993 .

[122]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[123]  Graham Kendall,et al.  Hyperheuristics: A Tool for Rapid Prototyping in Scheduling and Optimisation , 2002, EvoWorkshops.

[124]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[125]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[126]  William C. Regli,et al.  Machining feature-based comparisons of mechanical parts , 2001, Proceedings International Conference on Shape Modeling and Applications.

[127]  Eric Horvitz,et al.  Restart Policies with Dependence among Runs: A Dynamic Programming Approach , 2002, CP.

[128]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[129]  Guy Theraulaz,et al.  Dynamic Scheduling and Division of Labor in Social Insects , 2000, Adapt. Behav..

[130]  S V Zwaan,et al.  ANT COLONY OPTIMISATION FOR JOB SHOP SCHEDULING , 1998 .

[131]  Francesco Piazza,et al.  finite wordlength digital filter design using an annealing algorithm , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[132]  Klaus Neumann,et al.  Heuristics for the minimum project-duration problem with minimal and maximal time lags under fixed resource constraints , 1995, J. Intell. Manuf..

[133]  Klaus Neumann,et al.  Priority-rule methods for the resource- constrained project scheduling problem with minimal and maximal time lags - an empirical analysis , 1996 .

[134]  Mark S. Fox,et al.  Factory Model and Test Data Descriptions: OPIS Experiments , 1990 .

[135]  Susan L. Epstein,et al.  The Adaptive Constraint Engine , 2002, CP.

[136]  Bert De Reyck,et al.  A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations , 1998, Eur. J. Oper. Res..

[137]  David Zuckerman,et al.  Optimal Speedup of Las Vegas Algorithms , 1993, Inf. Process. Lett..

[138]  O. Scaillet,et al.  CONSISTENCY OF ASYMMETRIC KERNEL DENSITY ESTIMATORS AND SMOOTHED HISTOGRAMS WITH APPLICATION TO INCOME DATA , 2005, Econometric Theory.

[139]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[140]  Guy Theraulaz,et al.  Self-organization of hierarchies in animal societies: the case of the primitively eusocial waspPolistes dominulusChrist , 1995 .

[141]  Stephen F. Smith,et al.  Toward the Design of Web-Based Planning and Scheduling Services , 2001 .

[142]  Richard J. Wallace,et al.  Constraint Programming and Large Scale Discrete Optimization , 2001 .

[143]  William C. Regli,et al.  An approach to a feature-based comparison of solid models of machined parts , 2002, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[144]  Pedro S. de Souza,et al.  Asynchronous Teams: Cooperation Schemes for Autonomous Agents , 1998, J. Heuristics.

[145]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[146]  P. Cowling,et al.  A Parameter-Free Hyperheuristic for Scheduling a Sales Summit , 2002 .

[147]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[148]  Donald C Carroll,et al.  Heuristic sequencing of single and multiple component jobs. , 1965 .

[149]  E. Wegman Nonparametric probability density estimation , 1972 .

[150]  M. Selim Akturk,et al.  A new lower bounding scheme for the total weighted tardiness problem , 1998, Comput. Oper. Res..

[151]  Stephen F. Smith,et al.  Randomizing Dispatch Scheduling Policies , 2001 .

[152]  Graham Kendall,et al.  Adaptively ParameterisedHyperheuristics for Sales Summit Scheduling , 2001 .

[153]  A. Walden,et al.  Maximum likelihood estimation of the parameters of the generalized extreme-value distribution , 1980 .

[154]  Alexander Nareyek Using global constraints for local search , 1998, Constraint Programming and Large Scale Discrete Optimization.

[155]  Tuomas Sandholm,et al.  Deliberation in Equilibrium: Bargaining in Computationally Complex Problems , 2000, AAAI/IAAI.

[156]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[157]  Michael Pinedo,et al.  A heuristic to minimize the total weighted tardiness with sequence-dependent setups , 1997 .

[158]  Jean-Paul Watson,et al.  Toward an Understanding of Local Search Cost in Job-Shop Scheduling , 2001 .

[159]  Professor Dr. Klaus Neumann,et al.  Project Scheduling with Time Windows and Scarce Resources , 2003, Springer Berlin Heidelberg.

[160]  A. Wren,et al.  An Ant System for Bus Driver Scheduling 1 , 1997 .

[161]  S. Prestwich Local Search and Backtracking vs Non-Systematic Backtracking , 2001 .

[162]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[163]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .

[164]  Stephen F. Smith,et al.  A Constraint-Based Method for Project Scheduling with Time Windows , 2002, J. Heuristics.

[165]  William C. Regli,et al.  Resolving non-uniqueness in design feature histories , 1999, SMA '99.

[166]  Richard F. Hartl,et al.  An improved Ant System algorithm for theVehicle Routing Problem , 1999, Ann. Oper. Res..

[167]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[168]  Susan L. Epstein For the Right Reasons: The FORR Architecture for Learning in a Skill Domain , 1994, Cogn. Sci..

[169]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[170]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..

[171]  Xin Yao,et al.  Call routing by simulated annealing , 1995, IEA/AIE '95.

[172]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[173]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[174]  dominulus Christ Self-organization of Hierarchies in Animal Societies: The Case of the Primitively Eusocial Wasp Polsites dominulus Christ , 2022 .

[175]  Eric Horvitz,et al.  Reasoning about beliefs and actions under computational resource constraints , 1987, Int. J. Approx. Reason..

[176]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[177]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[178]  P. W. Jones,et al.  Bandit Problems, Sequential Allocation of Experiments , 1987 .

[179]  Klaus Neumann,et al.  Truncated branch-and-bound, schedule-construction, and schedule-improvement procedures for resource-constrained project scheduling , 2001, OR Spectr..

[180]  Peter Friedland,et al.  Search Space Characterization for a Telescope Scheduling Application , 1994 .

[181]  Rainer Kolisch,et al.  Characterization and generation of a general class of resource-constrained project scheduling problems , 1995 .

[182]  Janet Bruten,et al.  Ant-like agents for load balancing in telecommunications networks , 1997, AGENTS '97.

[183]  W. Ruml Using Prior Knowledge with Adaptive Probing , 2001 .

[184]  Jeremy Frank,et al.  When Gravity Fails: Local Search Topology , 1997, J. Artif. Intell. Res..

[185]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[186]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[187]  Andrew W. Moore,et al.  Learning evaluation functions for global optimization , 1998 .

[188]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[189]  Vincent A. Cicirello A Game-Theoretic Analysis of Multi-Agent Systems for Shop Floor Routing , 2001 .

[190]  Stephen F. Smith,et al.  Improved Routing Wasps for Distributed Factory Control , 2001, IJCAI 2001.