Ultrathin carbon molecular sieve membrane for propylene/propane separation

Ultrathin (down to 300 nm), high quality carbon molecular sieve (CMS) membranes were synthesized on mesoporous γ-alumina support by pyrolysis of defect free polymer films. The effect of membrane thickness on the micropore structure and gas transport properties of CMS membranes was studied with the feed of He/N2 and C3H6/C3H8 mixtures. Gas permeance increases with constant selectivity as the membrane thickness decreases to 520 nm. The 520-nm CMS membrane exhibits C3H6/C3H8 mixture selectivity of ∼31 and C3H6 permeance of ∼1.0 × 10−8 mol m−2 s−1 Pa−1. Both C3H8 permeance and He/N2 selectivity increase, but the permeance of He, N2, and C3H6 and the selectivity of C3H6/C3H8 decrease with further decrease in membrane thickness from 520 to 300 nm. These results can be explained by the thickness-dependent chain mobility of the polymer film which yields thinner final CMS membranes with reduction in pore size and possible closure of C3H6-accessible micropores. © 2015 American Institute of Chemical Engineers AIChE J, 2015

[1]  H. C. Foley,et al.  On the preparation of supported nanoporous carbon membranes , 2000 .

[2]  Jaap F. Vente,et al.  Membrane Retrofit Option for Paraffin/Olefin Separation—A Technoeconomic Evaluation , 2012 .

[3]  M. Toriida,et al.  Enhanced propylene/propane separation by carbonaceous membrane derived from poly (aryl ether ketone)/2,6-bis(4-azidobenzylidene)-4-methyl-cyclohexanone interpenetrating network , 2009 .

[4]  Ahmad Fauzi Ismail,et al.  A review on the latest development of carbon membranes for gas separation , 2001 .

[5]  Ryan P. Lively,et al.  Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. , 2012, The journal of physical chemistry letters.

[6]  A. Ismail,et al.  Fabrication of carbon membranes for gas separation--a review , 2004 .

[7]  R. García-Valls,et al.  State of the art of carbon molecular sieves supported on tubular ceramics for gas separation applications , 2010 .

[8]  M. S. Abdullah,et al.  Precursor Selection and Process Conditions in the Preparation of Carbon Membrane for Gas Separation: A Review , 2011 .

[9]  J. N. Barsema,et al.  Intermediate polymer to carbon gas separation membranes based on matrimid PI , 2004 .

[10]  H. Hatori,et al.  The mechanism of polyimide pyrolysis in the early stage , 1996 .

[11]  W. Koros,et al.  Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes , 2014 .

[12]  Zhong Li,et al.  Synthesis, characterization and gas transport properties of MOF-5 membranes , 2011 .

[13]  J. Hayashi,et al.  Pore size control of carbonized BPDA-pp′ ODA polyimide membrane by chemical vapor deposition of carbon , 1997 .

[14]  P. Tin,et al.  Advanced Fabrication of Carbon Molecular Sieve Membranes by Nonsolvent Pretreatment of Precursor Polymers , 2004 .

[15]  Kang Li,et al.  Polymeric membranes for light olefin/paraffin separation , 2012 .

[16]  Masakoto Kanezashi,et al.  Gas permeation properties through Al-doped organosilica membranes with controlled network size , 2014 .

[17]  Xiaoli Ma,et al.  Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes , 2014 .

[18]  J. Hayashi,et al.  Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp'ODA polyimide membrane , 1996 .

[19]  A. Mendes,et al.  Aging study of carbon molecular sieve membranes , 2008 .

[20]  H. Hatori,et al.  In-plane orientation and graphitizability of polyimide films: II. Film thickness dependence , 1993 .

[21]  Hong-Joo Lee,et al.  Gas permeation properties for the post-oxidized polyphenylene oxide (PPO) derived carbon membranes: Effect of the oxidation temperature , 2006 .

[22]  H. Kita,et al.  Olefin/Paraffin Separation through Carbonized Membranes Derived from an Asymmetric Polyimide Hollow Fiber Membrane , 1999 .

[23]  Y. S. Lin,et al.  Microstructural and gas separation properties of CVD modified mesoporous γ-alumina membranes , 2002 .

[24]  William J. Koros,et al.  Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations , 2012 .

[25]  William J. Koros,et al.  Defining the challenges for C3H6/C3H8 separation using polymeric membranes , 2003 .

[26]  Yongjiang Huang,et al.  Physical aging of thin glassy polymer films monitored by gas permeability , 2004 .

[27]  H. Tseng,et al.  Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α-Al2O3 support , 2014 .

[28]  T. Tsuru,et al.  Separation of propylene/propane binary mixtures by bis(triethoxysilyl) methane (BTESM)-derived silica membranes fabricated at different calcination temperatures , 2012 .

[29]  Matthew Anderson,et al.  Inorganic membranes for carbon dioxide and nitrogen separation , 2012 .

[30]  Y. S. Lin,et al.  Gamma-Alumina Supported Carbon Molecular Sieve Membrane for Propylene/Propane Separation , 2013 .

[31]  L. Shao,et al.  The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon , 2005 .

[32]  B. Freeman,et al.  Physical aging of ultrathin glassy polymer films tracked by gas permeability , 2009 .

[33]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[34]  R. Eldridge,et al.  Olefin/paraffin separation technology: a review , 1993 .

[35]  H. Tseng,et al.  Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane , 2012 .

[36]  Tai‐Shung Chung,et al.  Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA–HAB , 2014 .

[37]  Yuehe Lin,et al.  MICROPOROUS INORGANIC MEMBRANES , 2000 .

[38]  D. R. Paul,et al.  Thickness dependent thermal rearrangement of an ortho-functional polyimide , 2014 .

[39]  Y. S. Lin,et al.  A comparative study on thermal and hydrothermal stability of alumina, titania and zirconia membranes , 1994 .

[40]  Z. Lai,et al.  Effective separation of propylene/propane binary mixtures by ZIF-8 membranes , 2012 .

[41]  Paul J. Williams,et al.  Generalization of effect of oxygen exposure on formation and performance of carbon molecular sieve membranes , 2010 .

[42]  W. Koros,et al.  Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties , 1996 .

[43]  Y. S. Lin,et al.  Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes , 2013 .

[44]  W. Koros,et al.  An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials , 2005 .

[45]  Hae‐Kwon Jeong,et al.  In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. , 2013, Journal of the American Chemical Society.

[46]  J. Hayashi,et al.  Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube , 1997 .

[47]  W. Koros,et al.  Matrimid derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation , 2011 .