Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table

Abstract This article presents a high fidelity acceleration time waveform replication (TWR) on an electro-hydraulic shaking table (EHST) using the hybrid control combined with an offline feed-forward compensator and an online adaptive inverse control (AIC). This study applies the acceleration and velocity feedback to improve the steady performance of the EHST, and employs the system inverse transfer function (ITF) of the acceleration closed-loop system to extend the frequency bandwidth and a modeling error compensator to improve the dynamic characteristics. Moreover, the investigation utilizes a Zero Phase Error Tracking Controller to improve the accuracy of the designed ITF. The proposed hybrid controller also utilizes an online AIC for a high fidelity TWR after that the dynamic characteristics has been improved by the feedback and feed-forward controllers. Thus, the proposed hybrid control strategy combines the merits of the offline feed-forward compensation and online AIC. Performance analysis and comparison of the experimental results demonstrate that better replication accuracy with the proposed hybrid control can be achieved in experiments on an actual EHST.

[1]  Lucy Y. Pao,et al.  Nonminimum Phase Dynamic Inversion for Settle Time Applications , 2009, IEEE Transactions on Control Systems Technology.

[2]  Andrew G. Alleyne,et al.  A hybrid control strategy for active vibration isolation with electrohydraulic actuators , 2005 .

[3]  David P Stoten,et al.  The feedforward minimal control synthesis algorithm and its application to the control of shaking-tables , 2007 .

[4]  Sung-Kyung Lee,et al.  Real-time hybrid shaking table testing method for the performance evaluation of a tuned liquid damper controlling seismic response of building structures , 2007 .

[5]  Michel Verhaegen,et al.  Off-line feed-forward and feedback control on a vibration rig , 2003 .

[6]  Neil D. Sims,et al.  Vibration Control Strategies for Proof-mass Actuators , 2007 .

[7]  Po-Ying Chen,et al.  Precision tracking control of a biaxial piezo stage using repetitive control and double-feedforward compensation , 2011 .

[8]  James M. Ricles,et al.  Improving the inverse compensation method for real‐time hybrid simulation through a dual compensation scheme , 2009 .

[9]  Simon A Neild,et al.  An Improved Substructuring Control Strategy based on the Adaptive Minimal Control Synthesis Control Algorithm , 2005 .

[10]  Jan Swevers,et al.  Experimental validation of different MIMO-feedback controller design methods , 2004 .

[11]  D. P. Stoten,et al.  Adaptive control of shaking tables using the minimal control synthesis algorithm , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Masayuki Fujita,et al.  Robust control of electrodynamic shaker with 2dof control using H∞ filter , 2009 .

[13]  Xiaodong Ji,et al.  A substructure shaking table test for reproduction of earthquake responses of high‐rise buildings , 2009 .

[14]  Gregory L. Plett,et al.  Adaptive inverse control of unmodeled stable SISO and MIMO linear systems , 2002 .

[15]  G. Shen,et al.  Implementation of electrohydraulic shaking table controllers with a combined adaptive inverse control and minimal control synthesis algorithm , 2011 .

[16]  James M. Ricles,et al.  Analysis of actuator delay compensation methods for real-time testing , 2009 .

[17]  Du Gang,et al.  Improved filtered-ε adaptive inverse control and its application on nonlinear ship maneuvering , 2006 .

[18]  D. Stoten,et al.  The error-based minimal control synthesis algorithm with integral action , 2003 .

[19]  Guangda Liu,et al.  Combined control strategy using internal model control and adaptive inverse control for electro-hydraulic shaking table , 2013 .

[20]  Junwei Han,et al.  Modeling and controller design of a shaking table in an active structural control system , 2008 .

[21]  B. Widrow,et al.  Stationary and nonstationary learning characteristics of the LMS adaptive filter , 1976, Proceedings of the IEEE.

[22]  Gregory L. Plett,et al.  Adaptive inverse control of linear and nonlinear systems using dynamic neural networks , 2003, IEEE Trans. Neural Networks.

[23]  Dong-Ji Xuan,et al.  Design of a forced control system for a dynamic road simulator using QFT , 2008 .

[24]  Bernard Widrow,et al.  Adaptive inverse control , 1987, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[25]  Philip Moore,et al.  A practical control strategy for servo-pneumatic actuator systems , 1999 .

[26]  Yasutaka Tagawa,et al.  Controller development for the E-Defense shaking table , 2007 .

[27]  Andrew Plummer,et al.  A Detailed Dynamic Model of a Six-Axis Shaking Table , 2008 .

[28]  Ali H. Sayed,et al.  Adaptive Filters , 2008 .

[29]  Lucy Y. Pao,et al.  Nonminimum phase adaptive inverse control for settle performance applications , 2010 .

[30]  Barry W. Williams,et al.  Adaptive inverse control algorithm for shock testing , 2000 .

[31]  Dennis R. Morgan An analysis of multiple correlation cancellation loops with a filter in the auxiliary path , 1980 .

[32]  K. A. Edge,et al.  Adaptive control for a multi-axis hydraulic test rig , 2007 .

[33]  M. Mustafa,et al.  Trajectory-adaptive digital tracking controllers for non-minimum phase systems without factorisation of zeros , 2002 .

[34]  William R. Saunders,et al.  Stability and operating constraints of adaptive LMS-based feedback control , 2003, Autom..

[35]  T. M. Hessburg,et al.  Feedforward control (based on model inversion) and system performance prediction using high-fidelity nonlinear dynamic hydraulic system modeling , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[36]  J. De Cuyper,et al.  State Space Modeling and Stable Dynamic Inversion for Trajectory Tracking on an Industrial Seat Test Rig , 2002 .

[37]  J. K. Goodfellow,et al.  Implementation of frequency domain adaptive control in vibration test products , 1997 .

[38]  Andres El-Fakdi,et al.  On the Identification of Non Linear Models of Unmanned Underwater Vehicles , 2003 .

[39]  Gang Shen,et al.  Feed-forward inverse control for transient waveform replication on electro-hydraulic shaking table , 2012 .

[40]  Jan Swevers,et al.  Multivariable feedback design to improve tracking performance on tractor vibration test rig , 2007 .

[41]  Andrew Plummer,et al.  Control techniques for structural testing: A review , 2007 .

[42]  Zhengmao Ye,et al.  Tracking control of an electro-hydraulic shaking table system using a combined feedforward inverse model and adaptive inverse control for real-time testing , 2011 .

[43]  Krishnaswamy Srinivasan,et al.  Application of nonlinear adaptive control techniques to an electrohydraulic velocity servomechanism , 2004, IEEE Transactions on Control Systems Technology.

[44]  Andrei M. Reinhorn,et al.  Simulation of floor response spectra in shake table experiments , 2011 .

[45]  Goele Pipeleers,et al.  Optimal feedforward controller design for periodic inputs , 2010, Int. J. Control.

[46]  Gang Shen,et al.  Adaptive inverse control of time waveform replication for electrohydraulic shaking table , 2011 .

[47]  Hilton Abilio Grundling,et al.  Time domain sinusoidal acceleration controller for an electrodynamic shaker , 2008 .

[48]  He Yuzhu,et al.  QFT control based on zero phase error compensation for flight simulator , 2007 .

[49]  G.S. Bhuyan,et al.  Seismic behavior of flexible conductors connecting substation equipment-part II: shake table tests , 2004, IEEE Transactions on Power Delivery.

[50]  Muhammad Shafiq Internal model control structure using adaptive inverse control strategy. , 2005 .

[51]  R. T. Severn,et al.  The development of shaking tables–A historical note , 2011 .