Marked length spectrum rigidity for Anosov surfaces

Let $\Sigma$ be a smooth closed oriented surface of genus $\geq 2$. We prove that two metrics on $\Sigma$ with same marked length spectrum and Anosov geodesic flow are isometric via an isometry isotopic to the identity. The proof combines microlocal tools with the geometry of complex curves.

[1]  G. Paternain,et al.  Invariant distributions and the transport twistor space of closed surfaces , 2023, 2301.07391.

[2]  A. Gogolev,et al.  Smooth rigidity for 3-dimensional volume preserving Anosov flows and weighted marked length spectrum rigidity , 2022, 2210.02295.

[3]  S. Alvarez,et al.  Topology of leaves for minimal laminations by hyperbolic surfaces , 2019, Journal of Topology.

[4]  Gerhard Knieper,et al.  Geodesic stretch, pressure metric and marked length spectrum rigidity , 2019, Ergodic Theory and Dynamical Systems.

[5]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[6]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[7]  Dong Chen,et al.  Riemannian Anosov extension and applications , 2020, Journal de l’École polytechnique — Mathématiques.

[8]  Yi Liu Virtual homological spectral radii for automorphisms of surfaces , 2017, Journal of the American Mathematical Society.

[9]  C. Guillarmou,et al.  The marked length spectrum of Anosov manifolds , 2018, Annals of Mathematics.

[10]  C. Pugh,et al.  Anosov geodesic flows for embedded surfaces , 2019 .

[11]  S. Ana,et al.  Topology , 2018, International Journal of Mathematics Trends and Technology.

[12]  C. Guillarmou Lens rigidity for manifolds with hyperbolic trapped set , 2014, 1412.1760.

[13]  C. Guillarmou Invariant distributions and X-ray transform for Anosov flows , 2014, 1408.4732.

[14]  Benson Farb,et al.  A primer on mapping class groups , 2013 .

[15]  M. Salo,et al.  Spectral rigidity and invariant distributions on Anosov surfaces , 2012, 1208.4943.

[16]  Sadayoshi Kojima Entropy, Weil-Petersson translation distance and Gromov norm for surface automorphisms , 2010, 1004.2109.

[17]  T. Koberda Asymptotic linearity of the mapping class group and a homological version of the Nielsen–Thurston classification , 2009, 0902.2810.

[18]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[19]  C. Croke,et al.  Lengths and volumes in Riemannian manifolds , 2004 .

[20]  C. Croke RIGIDITY THEOREMS IN RIEMANNIAN GEOMETRY , 2004 .

[21]  G. Uhlmann,et al.  Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.

[22]  V. Sharafutdinov,et al.  Some problems of integral geometry on Anosov manifolds , 2003, Ergodic Theory and Dynamical Systems.

[23]  U. Hamenstädt,et al.  Cocycles, Symplectic Structures and Intersection , 1997, dg-ga/9710009.

[24]  Gérard Besson,et al.  Entropies et rigidités des espaces localement symétriques de courbure strictement négative , 1995 .

[25]  R. Estrada,et al.  Introduction to the Theory of Distributions , 1994 .

[26]  U. Hamenstädt Regularity of time-preserving conjugacies for contact Anosov flows with C1-Anosov splitting , 1993, Ergodic Theory and Dynamical Systems.

[27]  C. Croke,et al.  The marked length-spectrum of a surface of nonpositive curvature☆ , 1992 .

[28]  R. Ruggiero On the creation of conjugate points , 1991 .

[29]  Jean-Pierre Otal Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .

[30]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[31]  A. Katok Four applications of conformal equivalence to geometry and dynamics , 1988, Ergodic Theory and Dynamical Systems.

[32]  F. Bonahon The geometry of Teichmüller space via geodesic currents , 1988 .

[33]  R. Llave,et al.  Invariants for smooth conjugacy of hyperbolic dynamical systems. IV , 1988 .

[34]  D. Ornstein,et al.  Semi-rigidity of horocycle flows over compact surfaces of variable negative curvature , 1987, Ergodic Theory and Dynamical Systems.

[35]  R. Moriyón,et al.  Invariants for smooth conjugacy of hyperbolic dynamical systems. I , 1987 .

[36]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[37]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[38]  É. Ghys Flots d'Anosov sur les 3-variétés fibrées en cercles , 1984, Ergodic Theory and Dynamical Systems.

[39]  V. Guillemin,et al.  Some inverse spectral results for negatively curved 2-manifolds , 1980 .

[40]  W. Klingenberg Riemannian Manifolds With Geodesic Flow of Anosov Type , 1974 .

[41]  P. Eberlein When is a geodesic flow of Anosov type? II , 1973 .