Marked length spectrum rigidity for Anosov surfaces
暂无分享,去创建一个
[1] G. Paternain,et al. Invariant distributions and the transport twistor space of closed surfaces , 2023, 2301.07391.
[2] A. Gogolev,et al. Smooth rigidity for 3-dimensional volume preserving Anosov flows and weighted marked length spectrum rigidity , 2022, 2210.02295.
[3] S. Alvarez,et al. Topology of leaves for minimal laminations by hyperbolic surfaces , 2019, Journal of Topology.
[4] Gerhard Knieper,et al. Geodesic stretch, pressure metric and marked length spectrum rigidity , 2019, Ergodic Theory and Dynamical Systems.
[5] G. Ragsdell. Systems , 2002, Economics of Visual Art.
[6] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[7] Dong Chen,et al. Riemannian Anosov extension and applications , 2020, Journal de l’École polytechnique — Mathématiques.
[8] Yi Liu. Virtual homological spectral radii for automorphisms of surfaces , 2017, Journal of the American Mathematical Society.
[9] C. Guillarmou,et al. The marked length spectrum of Anosov manifolds , 2018, Annals of Mathematics.
[10] C. Pugh,et al. Anosov geodesic flows for embedded surfaces , 2019 .
[11] S. Ana,et al. Topology , 2018, International Journal of Mathematics Trends and Technology.
[12] C. Guillarmou. Lens rigidity for manifolds with hyperbolic trapped set , 2014, 1412.1760.
[13] C. Guillarmou. Invariant distributions and X-ray transform for Anosov flows , 2014, 1408.4732.
[14] Benson Farb,et al. A primer on mapping class groups , 2013 .
[15] M. Salo,et al. Spectral rigidity and invariant distributions on Anosov surfaces , 2012, 1208.4943.
[16] Sadayoshi Kojima. Entropy, Weil-Petersson translation distance and Gromov norm for surface automorphisms , 2010, 1004.2109.
[17] T. Koberda. Asymptotic linearity of the mapping class group and a homological version of the Nielsen–Thurston classification , 2009, 0902.2810.
[18] P. Hacking,et al. Riemann Surfaces , 2007 .
[19] C. Croke,et al. Lengths and volumes in Riemannian manifolds , 2004 .
[20] C. Croke. RIGIDITY THEOREMS IN RIEMANNIAN GEOMETRY , 2004 .
[21] G. Uhlmann,et al. Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.
[22] V. Sharafutdinov,et al. Some problems of integral geometry on Anosov manifolds , 2003, Ergodic Theory and Dynamical Systems.
[23] U. Hamenstädt,et al. Cocycles, Symplectic Structures and Intersection , 1997, dg-ga/9710009.
[24] Gérard Besson,et al. Entropies et rigidités des espaces localement symétriques de courbure strictement négative , 1995 .
[25] R. Estrada,et al. Introduction to the Theory of Distributions , 1994 .
[26] U. Hamenstädt. Regularity of time-preserving conjugacies for contact Anosov flows with C1-Anosov splitting , 1993, Ergodic Theory and Dynamical Systems.
[27] C. Croke,et al. The marked length-spectrum of a surface of nonpositive curvature☆ , 1992 .
[28] R. Ruggiero. On the creation of conjugate points , 1991 .
[29] Jean-Pierre Otal. Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .
[30] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[31] A. Katok. Four applications of conformal equivalence to geometry and dynamics , 1988, Ergodic Theory and Dynamical Systems.
[32] F. Bonahon. The geometry of Teichmüller space via geodesic currents , 1988 .
[33] R. Llave,et al. Invariants for smooth conjugacy of hyperbolic dynamical systems. IV , 1988 .
[34] D. Ornstein,et al. Semi-rigidity of horocycle flows over compact surfaces of variable negative curvature , 1987, Ergodic Theory and Dynamical Systems.
[35] R. Moriyón,et al. Invariants for smooth conjugacy of hyperbolic dynamical systems. I , 1987 .
[36] L. Hörmander,et al. The Analysis of Linear Partial Differential Operators IV , 1985 .
[37] M. Gromov,et al. Manifolds of Nonpositive Curvature , 1985 .
[38] É. Ghys. Flots d'Anosov sur les 3-variétés fibrées en cercles , 1984, Ergodic Theory and Dynamical Systems.
[39] V. Guillemin,et al. Some inverse spectral results for negatively curved 2-manifolds , 1980 .
[40] W. Klingenberg. Riemannian Manifolds With Geodesic Flow of Anosov Type , 1974 .
[41] P. Eberlein. When is a geodesic flow of Anosov type? II , 1973 .