This paper proposes a new paradigm for control plane in Time Sensitive Networks (TSN). An SDN controller proactively instructs network elements on the reconfigurations to perform locally if some specific events occur (e.g., failures, performance degradations). Instructions are given in the form of Finite State Machines (FSMs), which store information related to the actions that each network element should execute to react against a specific event. Thus, if such event occurs, the SDN controller is by-passed reducing reaction (e.g., recovery) time. Such an approach is here implemented for recovery upon failures in TSN. Experiments of failure recovery are carried out and measurements are presented comparing the FSM-based solution with a fully-centralized reactive restoration. Moreover, the proposed approach is compared through simulations against Frame Replication and Elimination for Reliability. Results will show how proactive FSM manipulation can strongly reduce recovery time in SDN-based TSN networks without overloading the network with frame replicas.