A multiscale Monte Carlo finite element method for determining mechanical properties of polymer nanocomposites

Abstract This paper introduces a multiscale Monte Carlo finite element method (MCFEM) for determining mechanical properties of polymer nanocomposites (PNC) that consist of polymers reinforced with single-walled carbon nanotubes (SWCNT). Note that several approaches discussed in the open literature suggest values for the mechanical properties of PNC that differ significantly from the corresponding ones derived by experimental procedures. This discrepancy is addressed by the proposed MCFEM which accounts for the effect of the non-uniform dispersion and distribution of SWCNT in polymers in the macroscopic mechanical behavior of PNC. Specifically, the method uses a multiscale homogenization approach to link the structural variability at the nano-/micro scales with the local constitutive behavior. Subsequently, the method incorporates a FE scheme to determine the Young’s modulus and Poisson Ratio of PNC. The use of the computed properties in macroscale modeling is validated by comparison with experimental tensile test data.

[1]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[2]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[3]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[4]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[5]  J. Margrave,et al.  Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications , 2005 .

[6]  N. J. Pagano,et al.  Statistically Equivalent Representative Volume Elements for Unidirectional Composite Microstructures: Part I - Without Damage , 2006 .

[7]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .

[8]  Yi Lin,et al.  Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes , 2004 .

[9]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[10]  Martin Ostoja-Starzewski,et al.  Stochastic finite elements as a bridge between random material microstructure and global response , 1999 .

[11]  Michael A. Sutton,et al.  Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites , 2004 .

[12]  Karen Lozano,et al.  Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes , 2004 .

[13]  M. Balkanski,et al.  Elastic properties of crystals of single-walled carbon nanotubes , 2000 .

[14]  T. Kashiwagi,et al.  Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration * , 2005 .

[15]  Robert H. Hauge,et al.  Poly(vinyl alcohol)/SWNT Composite Film , 2003 .

[16]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[17]  Sarah C. Baxter,et al.  Simulation of local material properties based on moving-window GMC , 2001 .

[18]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[19]  M. Nowak,et al.  A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game , 1993, Nature.

[20]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[21]  J. Loos,et al.  Visualization of single-wall carbon nanotube (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. , 2005, Ultramicroscopy.

[22]  Bodo Fiedler,et al.  Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study , 2005 .

[23]  Achintya Haldar,et al.  Reliability Assessment Using Stochastic Finite Element Analysis , 2000 .

[24]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[25]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[26]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[27]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[28]  Krzysztof Pielichowski,et al.  Polymer Nanocomposites for Aerospace Applications: Properties , 2003 .

[29]  Huajian Gao,et al.  The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites , 2004 .

[30]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[31]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[32]  G. Weng,et al.  On the application of Mori-Tanaka's theory involving transversely isotropic spheroidal inclusions , 1990 .

[33]  Dimitris C. Lagoudas,et al.  Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites , 2006 .

[34]  P. Spanos,et al.  On Random Field Discretization in Stochastic Finite Elements , 1998 .

[35]  R. Byron Pipes,et al.  Self-Consistent Properties of Carbon Nanotubes and Hexagonal Arrays as Composite Reinforcements , 2003 .