Determination of poroelastic properties of cartilage using constrained optimization coupled with finite element analysis.

[1]  Cande V Ananth,et al.  Measuring the compressive viscoelastic mechanical properties of human cervical tissue using indentation. , 2014, Journal of the mechanical behavior of biomedical materials.

[2]  Vaclav Brandejsky,et al.  Specimen specific parameter identification of ovine lumbar intervertebral discs: On the influence of fibre-matrix and fibre-fibre shear interactions. , 2014, Journal of the mechanical behavior of biomedical materials.

[3]  J. Mansour,et al.  Using regression models to determine the poroelastic properties of cartilage. , 2013, Journal of biomechanics.

[4]  Hanna Isaksson,et al.  A Review of the Combination of Experimental Measurements and Fibril-Reinforced Modeling for Investigation of Articular Cartilage and Chondrocyte Response to Loading , 2013, Comput. Math. Methods Medicine.

[5]  C L Teo,et al.  Liver tissue characterization from uniaxial stress-strain data using probabilistic and inverse finite element methods. , 2013, Journal of the mechanical behavior of biomedical materials.

[6]  A. Seifzadeh,et al.  Determination of nonlinear fibre-reinforced biphasic poroviscoelastic constitutive parameters of articular cartilage using stress relaxation indentation testing and an optimizing finite element analysis , 2012, Comput. Methods Programs Biomed..

[7]  T. Ovaert,et al.  Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method. , 2011, Journal of the mechanical behavior of biomedical materials.

[8]  I. Stokes,et al.  Growth plate mechanics and mechanobiology. A survey of present understanding. , 2009, Journal of biomechanics.

[9]  Hanif D. Sherali,et al.  Methods of Feasible Directions , 2005 .

[10]  R Huiskes,et al.  Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. , 2004, Journal of biomechanics.

[11]  Barry L. Nelson,et al.  A combined procedure for optimization via simulation , 2002, Proceedings of the Winter Simulation Conference.

[12]  J. Suh,et al.  A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. , 2001, Journal of biomechanics.

[13]  D Stamenović,et al.  Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. , 1999, Journal of biomechanics.

[14]  V. Mow,et al.  A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. , 1998, Journal of biomechanical engineering.

[15]  P. Khalsa,et al.  Compressive behavior of articular cartilage is not completely explained by proteoglycan osmotic pressure. , 1997, Journal of biomechanics.

[16]  V C Mow,et al.  Compressive stress‐relaxation behavior of bovine growth plate may be described by the nonlinear biphasic theory , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[17]  J. J. Kok,et al.  A numerical-experimental method for a mechanical characterization of biological materials. , 1993, Journal of biomechanics.

[18]  Bedri C. Cetin,et al.  Terminal repeller unconstrained subenergy tunneling (trust) for fast global optimization , 1993 .

[19]  B. Simon,et al.  Multiphase Poroelastic Finite Element Models for Soft Tissue Structures , 1992 .

[20]  W M Lai,et al.  An analysis of the unconfined compression of articular cartilage. , 1984, Journal of biomechanical engineering.

[21]  V. Mow,et al.  Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. , 1980, Journal of biomechanical engineering.

[22]  G. Vanderplaats,et al.  Structural optimization by methods of feasible directions. , 1973 .

[23]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.

[24]  Shenyan Chen Integrating ANSYS with Modern Numerical Optimization Technology – Part I : Conjugate Feasible Direction Method , 2008 .

[25]  Fulin Lei,et al.  Inverse analysis of constitutive models: biological soft tissues. , 2007, Journal of biomechanics.

[26]  W Herzog,et al.  The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression. , 2005, Medical engineering & physics.

[27]  A. Cheng,et al.  Fundamentals of Poroelasticity , 1993 .

[28]  T D Brown,et al.  Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. , 1986, Journal of biomechanics.

[29]  A. V. Levy,et al.  The Tunneling Algorithm for the Global Minimization of Functions , 1985 .