Finding Maximum Volume Sub-matrices of a Matrix
暂无分享,去创建一个
[1] G. Golub,et al. Linear least squares solutions by householder transformations , 1965 .
[2] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[3] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[4] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[5] Gene H. Golub,et al. Matrix computations , 1983 .
[6] F. Hoog,et al. Subset selection for matrices , 2007 .
[7] C. Pan,et al. Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .
[8] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[9] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[10] C. Pan. On the existence and computation of rank-revealing LU factorizations , 2000 .
[11] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[12] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[13] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES III: COMPUTING A COMPRESSED APPROXIMATE MATRIX DECOMPOSITION∗ , 2004 .
[14] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.