HoCHC: A Refutationally Complete and Semantically Invariant System of Higher-order Logic Modulo Theories

We present a simple resolution proof system for higher-order constrained Horn clauses (HoCHC)-a system of higher-order logic modulo theories-and prove its soundness and refutational completeness w.r.t. both standard and Henkin semantics. As corollaries, we obtain the compactness theorem and semi-decidability of HoCHC for semi-decidable background theories, and we prove that HoCHC satisfies a canonical model property. Moreover a variant of the well-known translation from higher-order to 1st-order logic is shown to be sound and complete for HoCHC in both semantics. We illustrate how to transfer decidability results for (fragments of) 1st-order logic modulo theories to our higher-order setting, using as example the Bernays-Schonflukel-Ramsey fragment of HoCHC modulo a restricted form of Linear Integer Arithmetic.

[1]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[2]  J. Benthem,et al.  Higher-Order Logic , 2001 .

[3]  Cesare Tinelli,et al.  Extending SMT Solvers to Higher-Order Logic , 2019, CADE.

[4]  Simon Cruanes,et al.  Superposition for Lambda-Free Higher-Order Logic , 2018, IJCAR.

[5]  Manfred Kerber How to Prove Higher Order Theorems in First Order Logic , 1991, IJCAI.

[6]  Pascal Fontaine,et al.  Language and Proofs for Higher-Order SMT (Work in Progress) , 2017, PxTP.

[7]  Ernst Althaus,et al.  Superposition Modulo Linear Arithmetic SUP(LA) , 2009, FroCoS.

[8]  John C. Reynolds,et al.  Definitional Interpreters for Higher-Order Programming Languages , 1972, ACM '72.

[9]  Cezary Kaliszyk,et al.  Hammering towards QED , 2016, J. Formaliz. Reason..

[10]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[11]  Nikolaj Bjørner,et al.  Horn Clause Solvers for Program Verification , 2015, Fields of Logic and Computation II.

[12]  Christoph Weidenbach,et al.  The Universal Fragment of Presburger Arithmetic with Unary Uninterpreted Predicates is Undecidable , 2017, ArXiv.

[13]  Chad E. Brown Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems , 2013, Journal of Automated Reasoning.

[14]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[15]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[16]  Naoki Kobayashi,et al.  Predicate abstraction and CEGAR for higher-order model checking , 2011, PLDI '11.

[17]  John C. Reynolds Definitional Interpreters for Higher-Order Programming Languages , 1998, High. Order Symb. Comput..

[18]  Richard Statman,et al.  Lambda Calculus with Types , 2013, Perspectives in logic.

[19]  Christoph Weidenbach,et al.  On the Combination of the Bernays-Schönfinkel-Ramsey Fragment with Simple Linear Integer Arithmetic , 2017, CADE.

[20]  C.-H. Luke Ong,et al.  Higher-order constrained horn clauses for verification , 2018, Proc. ACM Program. Lang..

[21]  Gérard Huet,et al.  Constrained resolution: a complete method for higher-order logic. , 1972 .

[22]  Leonardo Mendonça de Moura,et al.  Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories , 2009, CAV.

[23]  Thomas Johnsson,et al.  Lambda Lifting: Treansforming Programs to Recursive Equations , 1985, FPCA.

[24]  Christoph Benzmüller,et al.  Extensional Higher-Order Resolution , 1998, CADE.

[25]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[26]  John McCarthy,et al.  Mathematical Theory of Computation , 1991 .

[27]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[28]  William W. Wadge,et al.  Extensional Higher-Order Logic Programming , 2013, TOCL.

[29]  Harald Ganzinger,et al.  Refutational theorem proving for hierarchic first-order theories , 1994, Applicable Algebra in Engineering, Communication and Computing.

[30]  Christoph Weidenbach,et al.  Computing Small Clause Normal Forms , 2001, Handbook of Automated Reasoning.

[31]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[32]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[33]  John Lloyd Higher-Order Logic , 2017, Encyclopedia of Machine Learning and Data Mining.

[34]  C.-H. Luke Ong,et al.  Defunctionalization of Higher-Order Constrained Horn Clauses , 2018, ArXiv.

[35]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[36]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[37]  Christoph Weidenbach,et al.  SPASS Version 3.5 , 2009, CADE.

[38]  M.J.C. Gordon,et al.  The HOL Logic and System , 1994 .

[39]  Andrei Voronkov,et al.  First-Order Theorem Proving and Vampire , 2013, CAV.

[40]  Naoki Kobayashi,et al.  Automating relatively complete verification of higher-order functional programs , 2013, POPL.

[41]  Harald Ganzinger,et al.  On Restrictions of Ordered Paramodulation with Simplification , 1990, CADE.