Network-Based Integration of GWAS and Gene Expression Identifies a HOX-Centric Network Associated with Serous Ovarian Cancer Risk

Background: Genome-wide association studies (GWAS) have so far reported 12 loci associated with serous epithelial ovarian cancer (EOC) risk. We hypothesized that some of these loci function through nearby transcription factor (TF) genes and that putative target genes of these TFs as identified by coexpression may also be enriched for additional EOC risk associations. Methods: We selected TF genes within 1 Mb of the top signal at the 12 genome-wide significant risk loci. Mutual information, a form of correlation, was used to build networks of genes strongly coexpressed with each selected TF gene in the unified microarray dataset of 489 serous EOC tumors from The Cancer Genome Atlas. Genes represented in this dataset were subsequently ranked using a gene-level test based on results for germline SNPs from a serous EOC GWAS meta-analysis (2,196 cases/4,396 controls). Results: Gene set enrichment analysis identified six networks centered on TF genes (HOXB2, HOXB5, HOXB6, HOXB7 at 17q21.32 and HOXD1, HOXD3 at 2q31) that were significantly enriched for genes from the risk-associated end of the ranked list (P < 0.05 and FDR < 0.05). These results were replicated (P < 0.05) using an independent association study (7,035 cases/21,693 controls). Genes underlying enrichment in the six networks were pooled into a combined network. Conclusion: We identified a HOX-centric network associated with serous EOC risk containing several genes with known or emerging roles in serous EOC development. Impact: Network analysis integrating large, context-specific datasets has the potential to offer mechanistic insights into cancer susceptibility and prioritize genes for experimental characterization. Cancer Epidemiol Biomarkers Prev; 24(10); 1574–84. ©2015 AACR.

Dong Liang | Brooke L. Fridley | Jennifer A. Doherty | Matthias W. Beckmann | Peter A. Fasching | Hannah Yang | Graham G. Giles | Thilo Dörk | Natalia Bogdanova | Soo-Hwang Teo | Douglas F. Easton | Shan Wang-Gohrke | Arif B. Ekici | Angela Brooks-Wilson | Francesmary Modugno | Matthew L. Freedman | Karen Lu | Yurii B. Shvetsov | Keitaro Matsuo | James Paul | Honglin Song | Susan J. Ramus | Alice S. Whittemore | Simon A. Gayther | Ignace Vergote | Joe Dennis | Lara E Sucheston-Campbell | Catherine M. Phelan | Florian Heitz | Heli Nevanlinna | Georgia Chenevix-Trench | Argyrios Ziogas | Jolanta Lissowska | Anja Rudolph | Hoda Anton-Culver | Wei Zheng | Anna Jakubowska | Jan Lubinski | Jenny Chang-Claude | Diether Lambrechts | Melissa C. Southey | Malcolm C. Pike | Diana Eccles | Daniel Cramer | Alexander Hein | Nicolas Wentzensen | Joseph Kelley | Douglas A. Levine | Edwin S. Iversen | Kate Lawrenson | Philipp Harter | Peter Hillemanns | Weiva Sieh | Thomas A. Sellers | Jenny Lester | Nhu D. Le | Rachel Palmieri Weber | Anna Wu | Irene Orlow | Usha Menon | Aleksandra Gentry-Maharaj | Qiyuan Li | Kunle Odunsi | Barry Rosen | Roberta B. Ness | Linda E. Kelemen | Alvaro N.A. Monteiro | Valerie McGuire | Lynne R. Wilkens | Jonathan P. Tyrer | Xifeng Wu | Ellen L. Goode | Nadeem Siddiqui | Cezary Cybulski | Joseph H. Rothstein | Lara E. Sucheston-Campbell | Celeste Leigh Pearce | Camilla Krakstad | A. Whittemore | L. Kiemeney | M. Pike | M. Beckmann | P. Fasching | R. Vierkant | T. Sellers | A. Hein | J. Chang-Claude | B. Fridley | E. Goode | B. Karlan | N. Le | A. Berchuck | E. Iversen | G. Giles | T. Dörk | M. Southey | D. Easton | Xifeng Wu | Qiyuan Li | D. Lambrechts | A. Brooks-Wilson | D. Levine | L. Wilkens | P. Hillemanns | X. Shu | W. Zheng | A. Ziogas | H. Anton-Culver | R. Glasspool | U. Menon | A. Gentry-Maharaj | K. Aben | D. Eccles | G. Chenevix-Trench | L. Brinton | J. Lissowska | H. Nevanlinna | N. Bogdanova | S. Orsulic | J. Cunningham | M. Goodman | S. Kjaer | M. Freedman | J. Dennis | E. Dicks | A. Rudolph | A. Ekici | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | A. Wu | S. Teo | P. Pharoah | J. Tyrer | S. Wang-gohrke | A. Monteiro | S. Gayther | D. Cramer | N. Wentzensen | B. Rosen | I. Vergote | R. Ness | I. McNeish | S. Olson | H. Risch | L. Kelemen | S. Narod | K. Odunsi | I. Campbell | I. Runnebaum | I. Orlow | R. Weber | J. Doherty | J. Schildkraut | K. Moysich | F. Modugno | B. Ji | K. Lu | M. Bisogna | J. McLaughlin | H. Salvesen | L. Massuger | Y. Woo | A. V. van Altena | E. Bandera | M. Hildebrandt | C. Pearce | F. Heitz | P. Harter | A. du Bois | R. Butzow | K. Lawrenson | Hannah P. Yang | J. Lester | C. Cybulski | V. McGuire | J. Rothstein | W. Sieh | C. Walsh | M. Rossing | Zhihua Chen | Honglin Song | C. Phelan | A. Jensen | L. Cook | N. Siddiqui | S. Tworoger | J. Kelley | R. Edwards | E. Høgdall | C. Høgdall | Y. Chen | S. Ramus | L. Bjørge | C. Krakstad | J. Permuth-Wey | S. Kar | P. Harrington | J. Paul | I. Rzepecka | A. Dansonka-Mieszkowska | J. Kupryjańczyk | L. Pelttari | K. Wicklund | P. Thompson | Yukie T. Bean | K. Carty | M. Dürst | S. Hosono | S. Lambrechts | Alice W. Lee | S. Lele | A. Leminen | Dong Liang | L. Lundvall | E. Poole | I. Schwaab | Y. Shvetsov | K. Terry | I. L. Tangen | E. Van Nieuwenhuysen | Melissa Kellar | L. Nedergaard | Helen Baker | A. Timorek | Andrew Berchuck | Beth Y. Karlan | Sara H. Olson | Xiao-Ou Shu | Arto Leminen | Ed Dicks | Steven A. Narod | Helga B. Salvesen | Yu-Tang Gao | Tanja Pejovic | Sandra Orsulic | Iain A. McNeish | Elisa V. Bandera | Andreas du Bois | Estrid Hogdall | Agnieszka Dansonka-Mieszkowska | Ian Campbell | Jolanta Kupryjanczyk | Mary Anne Rossing | Ralf Butzow | Satoyo Hosono | Liisa M. Pelttari | Louise Brinton | Joellen M. Schildkraut | Robert A. Vierkant | Julie M. Cunningham | Zhihua Chen | Jennifer Permuth-Wey | Natalia Antonenkova | Maria Bisogna | Karen Carty | Linda S. Cook | Matthias Dürst | Robert P. Edwards | Rosalind Glasspool | Marc T. Goodman | Michelle A.T. Hildebrandt | Claus K. Hogdall | Allan Jensen | Bu-Tian Ji | Melissa Kellar | Lambertus A. Kiemeney | Susanne K. Kjaer | Sandrina Lambrechts | Shashi Lele | Lene Lundvall | John R. McLaughlin | Kirsten B. Moysich | Elizabeth M. Poole | Harvey A. Risch | Ingo B. Runnebaum | Iwona K. Rzepecka | Ira Schwaab | Kathryn L. Terry | Pamela J. Thompson | Ingvild L. Tangen | Shelley S. Tworoger | Anne M. van Altena | Kristine G. Wicklund | Yin-Ling Woo | Patricia Harrington | Ya-Yu Tsai | Agnieszka Timorek | Els Van Nieuwenhuysen | Christine Walsh | Paul D.P. Pharoah | Katja K.H. Aben | Yian Ann Chen | Line Bjørge | Siddhartha P. Kar | Helen Baker | Jacek Grownwald | Leon Massuger | Lotte Nedergaard | Yu-Tang Gao | Ya‐Yu Tsai | T. Pejovic | Jacek Grownwald | Chang-Claude Jenny | K. Lu | R. P. Weber | A. Monteiro | Wang Shan | J. Permuth‐Wey | Jenny Chang-Claude | Jennifer Permuth‐Wey | Shan Wang-Gohrke

[1]  B. Fridley,et al.  Gene set analysis of SNP data: benefits, challenges, and future directions , 2011, European Journal of Human Genetics.

[2]  Sebastian M. Armasu,et al.  Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer , 2013, Nature Communications.

[3]  Kerstin B. Meyer,et al.  Master regulators of FGFR2 signalling and breast cancer risk , 2013, Nature Communications.

[4]  Orli G. Bahcall,et al.  iCOGS collection provides a collaborative model , 2013, Nature Genetics.

[5]  T. Sauka-Spengler,et al.  Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers , 2011, BMC Genomics.

[6]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[7]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[8]  A. Whittemore,et al.  Common variants at 19p13 are associated with susceptibility to ovarian cancer , 2010, Nature Genetics.

[9]  Atul J. Butte,et al.  Quantifying the relationship between co-expression, co-regulation and gene function , 2004, BMC Bioinformatics.

[10]  Kconfab Investigators,et al.  Identification of six new susceptibility loci for invasive epithelial ovarian cancer , 2015 .

[11]  Nicholas G Martin,et al.  Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. , 2007, Human molecular genetics.

[12]  Alexander E. Kel,et al.  TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes , 2005, Nucleic Acids Res..

[13]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[14]  S. Gayther,et al.  Heterotypic three-dimensional in vitro modeling of stromal-epithelial interactions during ovarian cancer initiation and progression. , 2012, Journal of visualized experiments : JoVE.

[15]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[16]  S. Boyle,et al.  Evidence for a functional role of epigenetically regulated midcluster HOXB genes in the development of Barrett esophagus , 2012, Proceedings of the National Academy of Sciences.

[17]  Brooke L. Fridley,et al.  GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer , 2013, Nature Genetics.

[18]  References , 1971 .

[19]  R. Tothill,et al.  Novel Molecular Subtypes of Serous and Endometrioid Ovarian Cancer Linked to Clinical Outcome , 2008, Clinical Cancer Research.

[20]  Yurii B. Shvetsov,et al.  Identification of six new susceptibility loci for invasive epithelial ovarian cancer , 2015, Nature Genetics.

[21]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[22]  Ayellet V. Segrè,et al.  Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.

[23]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[24]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Whittemore,et al.  A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 , 2009, Nature Genetics.

[26]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[27]  Qinghua Wu,et al.  DNA methylation profiling of ovarian carcinomas and their in vitro models identifies HOXA9, HOXB5, SCGB3A1, and CRABP1 as novel targets , 2007, Molecular Cancer.

[28]  Orli G. Bahcall Shared susceptibility loci for breast, prostate and ovarian cancers , 2013, Nature Genetics.

[29]  Wenjun Cheng,et al.  Lineage infidelity of epithelial ovarian cancers is controlled by HOX genes that specify regional identity in the reproductive tract , 2005, Nature Medicine.

[30]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[31]  Graziano Pesole,et al.  Pscan: finding over-represented transcription factor binding site motifs in sequences from co-regulated or co-expressed genes , 2009, Nucleic Acids Res..

[32]  L. Aaltonen,et al.  Mice Lacking a Myc Enhancer That Includes Human SNP rs6983267 Are Resistant to Intestinal Tumors , 2012, Science.

[33]  M. Daly,et al.  Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology , 2011, PLoS genetics.

[34]  Mark I. McCarthy,et al.  Identification of an imprinted master trans-regulator at the KLF14 locus related to multiple metabolic phenotypes , 2011, Nature Genetics.

[35]  A. Whittemore,et al.  Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31 , 2013, Nature Communications.

[36]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[37]  Gregory A. Wyant,et al.  Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. , 2013, Cancer cell.

[38]  C. Carlson,et al.  Principles for the post-GWAS functional characterization of cancer risk loci , 2011, Nature Genetics.

[39]  Francesmary Modugno,et al.  Biomarker-Based Ovarian Carcinoma Typing: A Histologic Investigation in the Ovarian Tumor Tissue Analysis Consortium , 2013, Cancer Epidemiology, Biomarkers & Prevention.

[40]  A. Whittemore,et al.  A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24 , 2010, Nature Genetics.

[41]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[42]  T. Svingen,et al.  Hox transcription factors and their elusive mammalian gene targets , 2006, Heredity.

[43]  T. Pandita,et al.  A role for the HOXB7 homeodomain protein in DNA repair. , 2007, Cancer research.

[44]  R. Roden,et al.  A serologically identified tumor antigen encoded by a homeobox gene promotes growth of ovarian epithelial cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[46]  A. Butte,et al.  Leveraging models of cell regulation and GWAS data in integrative network-based association studies , 2012, Nature Genetics.

[47]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[48]  Wei Lu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[49]  L. Aaltonen,et al.  Lessons from functional analysis of genome-wide association studies. , 2013, Cancer research.

[50]  Christiana Kartsonaki,et al.  A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population , 2010, Nature Genetics.

[51]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[52]  A. Syvänen,et al.  Genome-wide profiling of target genes for the systemic lupus erythematosus-associated transcription factors IRF5 and STAT4 , 2012, Annals of the rheumatic diseases.

[53]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[54]  D. Easton,et al.  Risk prediction models for familial breast cancer. , 2006, Future oncology.