Stealth Attacks and Protection Schemes for State Estimators in Power Systems

State estimators in power systems are currently used to, for example, detect faulty equipment and to route power flows. It is believed that state estimators will also play an increasingly important role in future smart power grids, as a tool to optimally and more dynamically route power flows. Therefore security of the estimator becomes an important issue. The estimators are currently located in control centers, and large numbers of measurements are sent over unencrypted communication channels to the centers. We here study stealthy false-data attacks against these estimators. We define a security measure tailored to quantify how hard attacks are to perform, and describe an efficient algorithm to compute it. Since there are so many measurement devices in these systems, it is not reasonable to assume that all devices can be made encrypted overnight in the future. Therefore we propose two algorithms to place encrypted devices in the system such as to maximize their utility in terms of increased system security. We illustrate the effectiveness of our algorithms on two IEEE benchmark power networks under two attack and protection cost models.