Convergence analysis of a CM array for CDMA systems

The incorporation of directional sensitivity, provided by so-called adaptive antennas is useful in suppressing interfering signals that arise from spatially distinct mobile sources. The problem is that in a cellular radio environment where multipath exists, the standard adaptive antenna using reference signals may not properly lock on the desired signal. This is because the signal correlation matrix processed by the antenna may then be close to singular and standard algorithms fail. Also, most standard algorithms need to cooperate with the receiver for the spatial discrimination of signals. A smart antenna utilizing a blind algorithm is of interest since the antenna may not need to get any feedback from a receiver for the adjustment of weight coefficient for spatial processing and can stand alone to be plugged into any kind of receiver structure.In this paper, we address the convergence property of a Constant Modulus Algorithm which is a blind algorithm and, if employed, can provide no need for an antenna to cooperate with a receiver attached. By identifying a relationship between the weight coefficients and output signal amplitude, we also evaluate the performance of such a stand-alone antenna plus a CDMA matched filter reception. Our results show that for a three element CM array, the BER of a desired user with the other interfering users is much better than a conventional correlation receiver for a single user case since the array suppresses interferences and achieves array gain in SNR.