Communication scheme using a hyperchaotic semiconductor laser model: Chaos shift key revisited

Abstract.Based on the Maxwell-Bloch equations, we considered a five-dimensional ODE system, describing the dynamics of a semiconductor laser. The system has rich dynamics with multi-periodic, chaotic and hyperchaotic states. In this analysis, we have investigated the hyperchaotic nature of the aforesaid model and proposed a communication scheme, the generalized form of chaos shift keys, where the coupled systems do not need to be in the synchronized state. The results are implemented with the hyperchaotic laser model followed by a comprehensive security analysis.

[1]  A. Roy Chowdhury,et al.  Chaotic aspects of lasers with host-induced nonlinearity and its control , 2001 .

[2]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[3]  Muhammad Rezal Kamel Ariffin,et al.  Noise induced synchronization of time-delayed semiconductor lasers and authentication based asymmetric encryption , 2013 .

[4]  Parlitz,et al.  Encoding messages using chaotic synchronization. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[6]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[7]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[8]  Guanrong Chen,et al.  The generation and circuit implementation of a new hyper-chaos based upon Lorenz system , 2007 .

[9]  C. Cruz-Hernández,et al.  Experimental characterization of DFB and FP chaotic lasers with strong incoherent optical feedback , 2011 .

[10]  Wei Pan,et al.  Using polarization properties to enhance performance of chaos synchronization communication between vertical-cavity surface-emitting lasers , 2010 .

[11]  O. Rössler An equation for hyperchaos , 1979 .

[12]  Thang Manh Hoang,et al.  New Encoding Model for Chaos-Based Secure Communication (Cross-disciplinary Physics and Related Areas of Science and Technology) , 2006 .

[13]  A. P. Misra,et al.  Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption , 2011, 1102.2775.

[14]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[15]  Yuming Chen,et al.  Dynamics of a hyperchaotic Lorenz-type system , 2014 .

[16]  Kevin M. Short,et al.  UNMASKING A HYPERCHAOTIC COMMUNICATION SCHEME , 1998 .

[17]  Fei Wang,et al.  Tunable 12×10 GHz mode-locked semiconductor fiber laser incorporating a Mach-Zehnder interferometer filter , 2011 .

[18]  Lamberto Rondoni,et al.  Synchronization of time delayed semiconductor lasers and its applications in digital cryptography , 2011 .

[19]  A. Roy Chowdhury,et al.  Some aspects of synchronization and chaos in a coupled laser system , 2002 .

[20]  R. E. Amritkar,et al.  Synchronization of chaotic orbits: The effect of a finite time step. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  M. Yao,et al.  Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system , 2015 .

[22]  Zengqiang Chen,et al.  A novel hyperchaos system only with one equilibrium , 2007 .

[23]  Govind P. Agrawal,et al.  Absolute instabilities in lasers with host-induced nonlinearities and dispersion , 1998 .

[24]  U. Vincent,et al.  Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller , 2011 .

[25]  Lamberto Rondoni,et al.  Multi-image encryption based on synchronization of chaotic lasers and iris authentication , 2012 .

[26]  Hermann Haken,et al.  Analogy between higher instabilities in fluids and lasers , 1975 .

[27]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[28]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[29]  Santo Banerjee,et al.  Chaotic Scenario in the Stenflo Equations , 2001 .

[30]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[31]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[32]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[33]  Güémez,et al.  Modified method for synchronizing and cascading chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Hongxi Yin,et al.  Performance analysis of orthogonal optical chaotic division multiplexing utilizing semiconductor lasers , 2013 .

[35]  T. Kapitaniak,et al.  Synchronization of chaos using continuous control. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[37]  K. Briggs An improved method for estimating Liapunov exponents of chaotic time series , 1990 .

[38]  Zhouchao Wei,et al.  Hidden Attractors and Dynamical Behaviors in an Extended Rikitake System , 2015, Int. J. Bifurc. Chaos.