Smooth entrywise positivity preservers, a Horn-Loewner master theorem, and symmetric function identities

A (special case of a) fundamental result of Loewner and Horn [Trans. Amer. Math. Soc. 1969] says that given an integer n > 1, if the entrywise application of a smooth function f : (0,∞) → R preserves the set of n × n positive semidefinite matrices with positive entries, then the first n derivatives of f are non-negative on (0,∞). In a recent joint work with Belton– Guillot–Putinar [J. Eur. Math. Soc., in press], we proved a stronger version, and further used it to strengthen the Schoenberg–Rudin characterization of dimension-free positivity preservers [Duke Math. J. 1942, 1959]. In parallel, in recent works with Belton–Guillot–Putinar [Adv. Math. 2016] and with Tao [Amer. J. Math., in press] we used local, ‘real analytic versions’ at the origin of the Horn–Loewner condition, and using this discovered unexpected connections between entrywise polynomials preserving positivity and Schur polynomials. In this paper, we unify these two stories via a ‘Master Theorem’ (Theorem A) which (i) simultaneously unifies and extends all of the aforementioned variants; and (ii) proves the positivity of the first n nonzero Taylor coefficients at individual points rather than on all of (0,∞). A key step in the proof is a new determinantal / symmetric function calculation (Theorem B), which shows that Schur polynomials naturally arise from considering arbitrary entrywise maps that are sufficiently differentiable. Of independent interest may be the following application to symmetric function theory: we extend the Schur function expansion of Cauchy’s (1841) determinant (whose matrix entries are geometric series 1/(1− ujvk)), as well as of a determinant of Frobenius [J. reine angew. Math. 1882] (whose matrix entries are a sum of two geometric series), to arbitrary power series, and over all commutative rings.

[1]  Upton,et al.  Fractional Hadamard Powers of Positive Definite Matrices , 1989 .

[2]  Tewodros Amdeberhan A Determinant of the Chudnovskys Generalizing the Elliptic Frobenius-Stickelberger-Cauchy Determinantal Identity , 2000, Electron. J. Comb..

[3]  W. Rudin Positive definite sequences and absolutely monotonic functions , 1959 .

[4]  B. Rajaratnam,et al.  Preserving positivity for rank-constrained matrices , 2014, 1406.0042.

[5]  Terence Tao,et al.  On the sign patterns of entrywise positivity preservers in fixed dimension , 2017, American Journal of Mathematics.

[6]  G. Frobenius,et al.  Zur Theorie der elliptischen Functionen. , 2022 .

[7]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[8]  Jiang Zeng,et al.  Generalizations of Cauchy's determinant and Schur's Pfaffian , 2004, Adv. Appl. Math..

[9]  M. Putinar,et al.  A Panorama of Positivity. I: Dimension Free , 2018, Trends in Mathematics.

[10]  J. Schur Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. , 1911 .

[11]  Ralph P. Boas,et al.  Functions with positive differences , 1940 .

[12]  M. Putinar,et al.  Matrix positivity preservers in fixed dimension. Sur les transformations positives des matrices d'une dimension donnée. , 2023, 2310.18020.

[13]  A. Ron,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1994, Math. Comput..

[14]  Masao Ishikawa,et al.  A compound determinant identity for rectangular matrices and determinants of Schur functions , 2013, Adv. Appl. Math..

[15]  Roger A. Horn,et al.  The theory of infinitely divisible matrices and kernels , 1969 .

[16]  Greg Kuperberg,et al.  Symmetry classes of alternating-sign matrices under one roof , 2000 .

[17]  Augustin-Louis Cauchy Oeuvres complètes: Mémoire sur les fonctions alternées et sur les sommes alternées , 2009 .

[18]  Anders Thorup,et al.  On Giambelli's theorem on complete correlations , 1989 .

[19]  Hjalmar Rosengren,et al.  Elliptic determinant evaluations and the Macdonald identities for affine root systems , 2006, Compositio Mathematica.

[20]  M. Putinar,et al.  A panorama of positivity. II: Fixed dimension , 2020, Complex Analysis and Spectral Theory.

[21]  Mihai Putinar,et al.  Moment-sequence transforms , 2016, Journal of the European Mathematical Society.

[22]  W. E. H. B.,et al.  Aufgaben und Lehrsätze aus der Analysis. , 1925, Nature.