Visualization of cargo concentration by COPII minimal machinery in a planar lipid membrane

[1]  P. Verkade,et al.  Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development , 2008, Journal of Cell Science.

[2]  S. Stagg,et al.  Structural Basis for Cargo Regulation of COPII Coat Assembly , 2008, Cell.

[3]  Karl Rohr,et al.  A model for the self-organization of exit sites in the endoplasmic reticulum , 2008, Journal of Cell Science.

[4]  J. Christopher Fromme,et al.  The genetic basis of a craniofacial disease provides insight into COPII coat assembly. , 2007, Developmental cell.

[5]  J. Mancias,et al.  Structure and Organization of Coat Proteins in the COPII Cage , 2007, Cell.

[6]  A. Nakano,et al.  Mechanisms of COPII vesicle formation and protein sorting , 2007, FEBS letters.

[7]  T. Yanagida,et al.  Immobilizing single lipid and channel molecules in artificial lipid bilayers with annexin A5. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[8]  S. Stagg,et al.  Structure of the Sec13/31 COPII coat cage , 2006, Nature.

[9]  Simon C Watkins,et al.  Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission , 2005, The Journal of cell biology.

[10]  Randy Schekman,et al.  Sar1p N-Terminal Helix Initiates Membrane Curvature and Completes the Fission of a COPII Vesicle , 2005, Cell.

[11]  A. Nakano,et al.  Dissection of COPII subunit-cargo assembly and disassembly kinetics during Sar1p-GTP hydrolysis , 2005, Nature Structural &Molecular Biology.

[12]  R. Schekman,et al.  GTP/GDP exchange by Sec12p enables COPII vesicle bud formation on synthetic liposomes , 2004, The EMBO journal.

[13]  R. Schekman,et al.  Bi-directional protein transport between the ER and Golgi. , 2004, Annual review of cell and developmental biology.

[14]  R. Pepperkok,et al.  Differential effects of a GTP-restricted mutant of Sar1p on segregation of cargo during export from the endoplasmic reticulum , 2004, Journal of Cell Science.

[15]  J. Bonifacino,et al.  The Mechanisms of Vesicle Budding and Fusion , 2004, Cell.

[16]  A. Nakano,et al.  Reconstitution of Coat Protein Complex II (COPII) Vesicle Formation from Cargo-reconstituted Proteoliposomes Reveals the Potential Role of GTP Hydrolysis by Sar1p in Protein Sorting* , 2004, Journal of Biological Chemistry.

[17]  Randy Schekman,et al.  Multiple Cargo Binding Sites on the COPII Subunit Sec24p Ensure Capture of Diverse Membrane Proteins into Transport Vesicles , 2003, Cell.

[18]  E. Mossessova,et al.  SNARE Selectivity of the COPII Coat , 2003, Cell.

[19]  Juan S. Bonifacino,et al.  Coat proteins: shaping membrane transport , 2003, Nature Reviews Molecular Cell Biology.

[20]  T. Yanagida,et al.  Simultaneous optical and electrical recording of a single ion-channel. , 2002, The Japanese journal of physiology.

[21]  R. A. Corpina,et al.  Structure of the Sec23/24–Sar1 pre-budding complex of the COPII vesicle coat , 2002, Nature.

[22]  R. Schekman,et al.  Sec16p potentiates the action of COPII proteins to bud transport vesicles , 2002, The Journal of cell biology.

[23]  K. M. Armstrong,et al.  On the origin of closing flickers in gramicidin channels: a new hypothesis. , 2002, Biophysical journal.

[24]  I. Wilson,et al.  Crystal structure of Sar1-GDP at 1.7 Å resolution and the role of the NH2 terminus in ER export , 2001, The Journal of cell biology.

[25]  R. Schekman,et al.  Dynamics of the COPII coat with GTP and stable analogues , 2001, Nature Cell Biology.

[26]  T. Kirchhausen,et al.  Three ways to make a vesicle , 2000, Nature Reviews Molecular Cell Biology.

[27]  T. Yanagida,et al.  An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. , 1999, Biochemical and biophysical research communications.

[28]  R. Schekman,et al.  Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. , 1998, Science.

[29]  R. Schekman,et al.  COPII-Coated Vesicle Formation Reconstituted with Purified Coat Proteins and Chemically Defined Liposomes , 1998, Cell.

[30]  Randy Schekman,et al.  COPII–cargo interactions direct protein sorting into ER-derived transport vesicles , 1998, Nature.

[31]  T. Yanagida,et al.  Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. , 1997, Biochemical and biophysical research communications.

[32]  C. Kaiser,et al.  COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. , 1996, Molecular biology of the cell.

[33]  R. Schekman,et al.  COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum , 1994, Cell.

[34]  R. Schekman,et al.  SEC12 encodes a guanine-nucleotide-exchange factor essential for transport vesicle budding from the ER , 1993, Nature.

[35]  R. Schekman,et al.  Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. , 1993, Science.

[36]  E. Jakobsson,et al.  Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. , 1990, Biophysical journal.

[37]  M. Muramatsu,et al.  A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus , 1989, The Journal of cell biology.

[38]  H. Huang,et al.  Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. , 1986, Biophysical journal.

[39]  S. White A study of lipid bilayer membrane stability using precise measurements of specific capacitance. , 1970, Biophysical journal.

[40]  K. M. Armstrong,et al.  Proton transfer in gramicidin channels is modulated by the thickness of monoglyceride bilayers. , 2003, Biophysical journal.