Correlations in Joint Spectral and Polarization Imaging

Recent imaging techniques enable the joint capture of spectral and polarization image data. In order to permit the design of computational imaging techniques and future processing of this information, it is interesting to describe the related image statistics. In particular, in this article, we present observations for different correlations between spectropolarimetric channels. The analysis is performed on several publicly available databases that are unified for joint processing. We perform global investigation and analysis on several specific clusters of materials or reflection types. We observe that polarization channels generally have more inter-channel correlation than the spectral channels.

[1]  J Scott Tyo,et al.  Review of passive imaging polarimetry for remote sensing applications. , 2006, Applied optics.

[2]  K. Pearson VII. Note on regression and inheritance in the case of two parents , 1895, Proceedings of the Royal Society of London.

[3]  L. W. Chubb,et al.  Polarized Light , 2019, Light Science.

[4]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[5]  D. L. Fleming,et al.  Polarization-sensitive thermal imaging , 1994, Defense, Security, and Sensing.

[6]  Wesley E. Snyder,et al.  Mosaic multispectral focal plane array cameras , 2004, SPIE Defense + Commercial Sensing.

[7]  Bin Hui,et al.  Image interpolation for division of focal plane polarimeters with intensity correlation. , 2016, Optics express.

[8]  Viktor Gruev,et al.  A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors , 2012, Defense + Commercial Sensing.

[9]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[10]  Pierre Gouton,et al.  Multispectral Filter Arrays: Recent Advances and Practical Implementation , 2014, Sensors.

[11]  P. Gope,et al.  PHOTOELASTIC DETERMINATION OF MIXED MODE STRESS INTENSITY FACTORS , 2009 .

[12]  Robert W. Collins,et al.  Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films , 1999 .

[13]  A. Fymat Polarization effects in fourier spectroscopy. I: coherency matrix representation. , 1972, Applied optics.

[14]  Shree K. Nayar,et al.  Separation of Reflection Components Using Color and Polarization , 1997, International Journal of Computer Vision.

[15]  George Gabriel Stokes,et al.  On the Composition and Resolution of Streams of Polarized Light from different Sources , 2009 .

[16]  Pierre-Jean Lapray,et al.  Review of spectral and polarization imaging systems , 2020, Unconventional Optical Imaging II.

[17]  Shigeo Kato,et al.  Multispectral demosaicking algorithm based on inter-channel correlation , 2014, 2014 IEEE Visual Communications and Image Processing Conference.

[18]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[19]  椎名 乾平 Bravais (1846) による2変量正規分布と相関係数の発見 -Analyse mathematique sur les probabilites des erreurs de situation d'un point 解題- , 2016 .

[20]  Paul E. Debevec,et al.  Single-Shot Reflectance Measurement from Polarized Color Gradient Illumination , 2015, 2015 IEEE International Conference on Computational Photography (ICCP).

[21]  Pierre-Jean Lapray,et al.  Database of polarimetric and multispectral images in the visible and NIR regions , 2018, Photonics Europe.

[22]  Dong-Hwan Har,et al.  Technical Report on Semiautomatic Segmentation Using the Adobe Photoshop , 2005, Journal of Digital Imaging.

[23]  Yücel Altunbasak,et al.  Color plane interpolation using alternating projections , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[24]  Eugene A. Irene,et al.  Handbook of Ellipsometry , 2005 .

[25]  T. Okawa,et al.  A 1/2inch 48M All PDAF CMOS Image Sensor Using 0.8µm Quad Bayer Coding 2×2OCL with 1.0lux Minimum AF Illuminance Level , 2019, 2019 IEEE International Electron Devices Meeting (IEDM).

[26]  D. Leaird,et al.  Programmable polarization-independent spectral phase compensation and pulse shaping. , 2003, Optics express.

[27]  Yinqiang Zheng,et al.  Convolutional demosaicing network for joint chromatic and polarimetric imagery. , 2019, Optics letters.

[28]  Pierre-Jean Lapray,et al.  Survey of Demosaicking Methods for Polarization Filter Array Images , 2018, Sensors.

[29]  José J. Gil,et al.  Review on Mueller matrix algebra for the analysis of polarimetric measurements , 2014 .

[30]  Ludovic Macaire,et al.  Multispectral Demosaicing Using Pseudo-Panchromatic Image , 2017, IEEE Transactions on Computational Imaging.

[31]  Pierre Gouton,et al.  High Dynamic Range Spectral Imaging Pipeline For Multispectral Filter Array Cameras , 2017, Sensors.

[32]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[33]  Lu Fang,et al.  Adaptive Multispectral Demosaicking Based on Frequency-Domain Analysis of Spectral Correlation , 2017, IEEE Transactions on Image Processing.

[34]  Wolfgang Heidrich,et al.  Polarization Demosaicking for Monochrome and Color Polarization Focal Plane Arrays , 2019, VMV.

[35]  Abhijeet Ghosh,et al.  Polarization imaging reflectometry in the wild , 2017, ACM Trans. Graph..

[36]  S. Tominaga,et al.  Polarization imaging for material classification , 2008 .

[37]  K. Gross,et al.  Estimating index of refraction from polarimetric hyperspectral imaging measurements. , 2016, Optics express.