Solving higher order PDEs with isogeometric analysis on implicit domains using weighted extended THB-splines

Abstract We study the numerical solution for higher order partial differential equations defined on implicit domains. We represent isogeometric analysis on implicit domains and construct weighted extended truncated hierarchical B-splines. Specifically, the spline basis functions are classified, according to the cells occupied by their support inside the domain, using a level by level classification mechanism. A hierarchical extension is then proposed to connect basis functions with small support in the computational domain to more stable basis inside the domain. The basis functions are formulated to acquire local adaptive refinement and preserve stability to release the full approximation power. A numerical illustration is performed to solve the Biharmonic equation on a number of implicit domains with holes and reentrant corners. The error results and condition numbers of the numerical examples reflect the potential of the approach.

[1]  Fang Deng,et al.  Isogeometric analysis on implicit domains using weighted extended PHT-splines , 2019, J. Comput. Appl. Math..

[2]  Klaus Höllig,et al.  Programming finite element methods with weighted B-splines , 2015, Comput. Math. Appl..

[3]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..

[4]  Günther Greiner,et al.  Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines , 2010 .

[5]  Haijun Wu,et al.  A combined finite element method for elliptic problems posted in domains with rough boundaries , 2018, J. Comput. Appl. Math..

[6]  Klaus Höllig,et al.  Introduction to the Web-method and its applications , 2005, Adv. Comput. Math..

[7]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[8]  Jiansong Deng,et al.  Numerical Integration Over Implicitly Defined Domains with Topological Guarantee , 2019, Communications in Mathematics and Statistics.

[9]  Alfio Quarteroni,et al.  Isogeometric Analysis and error estimates for high order partial differential equations in Fluid Dynamics , 2014 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[12]  Bert Jüttler,et al.  Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.

[13]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[14]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[15]  Klaus Höllig,et al.  Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods , 2010, Curves and Surfaces.

[16]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[17]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[18]  Ulrich Reif,et al.  Weighted Extended B-Spline Approximation of Dirichlet Problems , 2001, SIAM J. Numer. Anal..

[19]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[20]  Andreas Keller,et al.  Finite Element Approximation with Hierarchical B-Splines , 2014, Curves and Surfaces.

[21]  F. Cirak,et al.  A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .

[22]  Qingqi Hong,et al.  Towards additive manufacturing oriented geometric modeling using implicit functions , 2018, Visual Computing for Industry, Biomedicine, and Art.

[23]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[24]  Rafael Vázquez,et al.  Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines , 2016 .

[25]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[26]  G. R. Liu,et al.  On singular ES-FEM for fracture analysis of solids with singular stress fields of arbitrary order , 2018 .

[27]  Alfio Quarteroni,et al.  Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .

[28]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[29]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[30]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[31]  Jiansong Deng,et al.  Compression Algorithm for Implicit 3D B-Spline Solids , 2018 .

[32]  Trond Kvamsdal,et al.  On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .

[33]  Ming Li,et al.  Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization , 2017, ArXiv.

[34]  A. N. Shevchenko,et al.  Numerical integration software for projection and projection-grid methods , 1994 .

[35]  Bert Jüttler,et al.  THB-splines multi-patch parameterization for multiply-connected planar domains via Template Segmentation , 2019, J. Comput. Appl. Math..

[36]  Jiansong Deng,et al.  Surface modeling with polynomial splines over hierarchical T-meshes , 2007, 2007 10th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[37]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[38]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[39]  V. Shapiro,et al.  Adaptively Weighted Numerical Integration in the Finite Cell Method , 2016 .

[40]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[41]  K. Höllig Finite element methods with B-splines , 1987 .