The Virtual Element Method on Anisotropic Polygonal Discretizations

In recent years, the numerical treatment of boundary value problems with the help of polygonal and polyhedral discretization techniques has received a lot of attention within several disciplines. Due to the general element shapes an enormous flexibility is gained and can be exploited, for instance, in adaptive mesh refinement strategies. The Virtual Element Method (VEM) is one of the new promising approaches applicable on general meshes. Although polygonal element shapes may be highly adapted, the analysis relies on isotropic elements which must not be very stretched. But, such anisotropic element shapes have a high potential in the discretization of interior and boundary layers. Recent results on anisotropic polygonal meshes are reviewed and the Virtual Element Method is applied on layer adapted meshes containing isotropic and anisotropic polygonal elements.

[1]  Lourenço Beirão da Veiga,et al.  Hierarchical A Posteriori Error Estimators for the Mimetic Discretization of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[2]  Gerd Kunert,et al.  An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes , 2000, Numerische Mathematik.

[3]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[4]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[5]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[6]  Stefano Berrone,et al.  Order preserving SUPG stabilization for the Virtual Element formulation of advection-diffusion problems , 2016 .

[7]  Steffen Weißer,et al.  Residual based error estimate and quasi-interpolation on polygonal meshes for high order BEM-based FEM , 2015, Comput. Math. Appl..

[8]  P. F. Antonietti,et al.  A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.

[9]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[10]  Stefano Berrone,et al.  A residual a posteriori error estimate for the Virtual Element Method , 2017 .

[11]  Stefano Berrone,et al.  Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method , 2017 .

[12]  Thomas Wick,et al.  The Dual-Weighted Residual Estimator Realized on Polygonal Meshes , 2017, Comput. Methods Appl. Math..

[13]  Ulrich Langer,et al.  From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes , 2009 .

[14]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[15]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[16]  Lorenzo Mascotto,et al.  Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.

[17]  Steffen Weißer,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes , 2022 .

[18]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .