Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions
暂无分享,去创建一个
[1] C. Eckart,et al. The approximation of one matrix by another of lower rank , 1936 .
[2] J. Neumann,et al. Numerical inverting of matrices of high order , 1947 .
[3] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .
[4] J. Neumann,et al. Numerical inverting of matrices of high order. II , 1951 .
[5] L. Mirsky. SYMMETRIC GAUGE FUNCTIONS AND UNITARILY INVARIANT NORMS , 1960 .
[6] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[7] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[8] S. M. Samuels,et al. Monotone Convergence of Binomial Probabilities and a Generalization of Ramanujan's Equation , 1968 .
[9] G. Stewart. Accelerating the orthogonal iteration for the eigenvectors of a Hermitian matrix , 1969 .
[10] G. Stewart. On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .
[11] Karel Hrbacek,et al. A New Proof that π , 1979, Math. Log. Q..
[12] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[13] Gene H. Golub,et al. Matrix computations , 1983 .
[14] J. Dixon. Estimating Extremal Eigenvalues and Condition Numbers of Matrices , 1983 .
[15] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[16] B. Carl. Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces , 1985 .
[17] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[18] Y. Gordon. Some inequalities for Gaussian processes and applications , 1985 .
[19] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[20] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[21] L Sirovich,et al. Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.
[22] Y. Gordon. Gaussian Processes and Almost Spherical Sections of Convex Bodies , 1988 .
[23] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[24] J. E. Glynn,et al. Numerical Recipes: The Art of Scientific Computing , 1989 .
[25] S. Szarek. Spaces with large distance to l∞n and random matrices , 1990 .
[26] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[27] Henryk Wozniakowski,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992, SIAM J. Matrix Anal. Appl..
[28] J. Kuczy,et al. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithms with a Random Start , 1992 .
[29] Andrew R. Barron,et al. Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.
[30] David R. Karger,et al. Random sampling in cut, flow, and network design problems , 1994, STOC '94.
[31] D. S. Parker,et al. The randomizing FFT : an alternative to pivoting in GaussianeliminationD , 1995 .
[32] Noga Alon,et al. The space complexity of approximating the frequency moments , 1996, STOC '96.
[33] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[34] J. Navarro-Pedreño. Numerical Methods for Least Squares Problems , 1996 .
[35] Peter L. Bartlett,et al. Efficient agnostic learning of neural networks with bounded fan-in , 1996, IEEE Trans. Inf. Theory.
[36] Åke Björck,et al. Numerical methods for least square problems , 1996 .
[37] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[38] R. Bhatia. Matrix Analysis , 1996 .
[39] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[40] Hyeonjoon Moon,et al. The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[41] M. Ledoux. On Talagrand's deviation inequalities for product measures , 1997 .
[42] Jon M. Kleinberg,et al. Two algorithms for nearest-neighbor search in high dimensions , 1997, STOC '97.
[43] L. Greengard,et al. A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.
[44] L. Trefethen,et al. Numerical linear algebra , 1997 .
[45] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[46] Sam T. Roweis,et al. EM Algorithms for PCA and SPCA , 1997, NIPS.
[47] Henryk Wozniakowski,et al. Estimating a largest eigenvector by Lanczos and polynomial algorithms with a random start , 1998, Numer. Linear Algebra Appl..
[48] Piotr Indyk,et al. Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.
[49] Martin Vetterli,et al. Data Compression and Harmonic Analysis , 1998, IEEE Trans. Inf. Theory.
[50] H. Wozniakowski,et al. Estimating a largest eigenvector by Lanczos and polynomial algorithms with a random start , 1998 .
[51] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[52] Rafail Ostrovsky,et al. Efficient search for approximate nearest neighbor in high dimensional spaces , 1998, STOC '98.
[53] Harry Wechsler,et al. The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..
[54] Anupam Gupta,et al. An elementary proof of the Johnson-Lindenstrauss Lemma , 1999 .
[55] Alan M. Frieze,et al. Clustering in large graphs and matrices , 1999, SODA '99.
[56] G. W. Stewart,et al. Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.
[57] Douglas Stott Parker,et al. Using randomization to make recursive matrix algorithms practical , 1999, J. Funct. Program..
[58] David R. Karger,et al. Random Sampling in Cut, Flow, and Network Design Problems , 1999, Math. Oper. Res..
[59] Noga Alon,et al. Tracking join and self-join sizes in limited storage , 1999, PODS '99.
[60] Jack J. Dongarra,et al. Guest Editors Introduction to the top 10 algorithms , 2000, Comput. Sci. Eng..
[61] G. W. Stewart,et al. The decompositional approach to matrix computation , 2000, Comput. Sci. Eng..
[62] Russ Bubley,et al. Randomized algorithms , 1995, CSUR.
[63] David R. Karger,et al. Minimum cuts in near-linear time , 1998, JACM.
[64] C. Pan. On the existence and computation of rank-revealing LU factorizations , 2000 .
[65] Francis Sullivan,et al. The Metropolis Algorithm , 2000, Computing in Science & Engineering.
[66] Klaus Jansen,et al. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2012, Lecture Notes in Computer Science.
[67] A. Buchholz. Operator Khintchine inequality in non-commutative probability , 2001 .
[68] M. Ledoux. The concentration of measure phenomenon , 2001 .
[69] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[70] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[71] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[72] B. Engquist,et al. Wavelet-Based Numerical Homogenization with Applications , 2002 .
[73] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[74] S. Muthukrishnan,et al. Data streams: algorithms and applications , 2005, SODA '03.
[75] Wolfgang Hackbusch,et al. Construction and Arithmetics of H-Matrices , 2003, Computing.
[76] Dimitris Achlioptas,et al. Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..
[77] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[78] Alan M. Frieze,et al. Clustering Large Graphs via the Singular Value Decomposition , 2004, Machine Learning.
[79] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[80] Hans C. van Houwelingen,et al. The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani and Jerome Friedman, Springer, New York, 2001. No. of pages: xvi+533. ISBN 0‐387‐95284‐5 , 2004 .
[81] Anna R. Karlin,et al. Spectral methods for data analysis , 2004 .
[82] Ann B. Lee,et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[83] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[84] Per-Gunnar Martinsson,et al. On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..
[85] Zizhong Chen,et al. Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[86] A. Buchholz. Optimal Constants in Khintchine Type Inequalities for Fermions, Rademachers and q-Gaussian Operators , 2005 .
[87] K. Clarkson. Subgradient and sampling algorithms for l1 regression , 2005, SODA '05.
[88] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[89] V. Rokhlin,et al. A randomized algorithm for the approximation of matrices , 2006 .
[90] P. Atzberger. The Monte-Carlo Method , 2006 .
[91] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[92] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[93] E.J. Candes. Compressive Sampling , 2022 .
[94] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[95] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices III: Computing a Compressed Approximate Matrix Decomposition , 2006, SIAM J. Comput..
[96] S. Muthukrishnan,et al. Subspace Sampling and Relative-Error Matrix Approximation: Column-Based Methods , 2006, APPROX-RANDOM.
[97] Emmanuel J. Candès,et al. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..
[98] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[99] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[100] M. Rudelson,et al. Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.
[101] Petros Drineas,et al. Fast Monte Carlo Algorithms for Matrices I: Approximating Matrix Multiplication , 2006, SIAM J. Comput..
[102] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[103] Kasturi R. Varadarajan,et al. Efficient Subspace Approximation Algorithms , 2007, Discrete & Computational Geometry.
[104] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[105] Jimeng Sun,et al. Less is More: Compact Matrix Decomposition for Large Sparse Graphs , 2007, SDM.
[106] Per-Gunnar Martinsson,et al. Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.
[107] Michael W. Mahoney,et al. A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .
[108] E. Candès,et al. Sparsity and incoherence in compressive sampling , 2006, math/0611957.
[109] Benjamin Recht,et al. Random Features for Large-Scale Kernel Machines , 2007, NIPS.
[110] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[111] M. Rozložník. Numerics of Gram-Schmidt orthogonalization , 2007 .
[112] V. Rokhlin,et al. A fast randomized algorithm for the approximation of matrices ✩ , 2007 .
[113] James Demmel,et al. Fast linear algebra is stable , 2006, Numerische Mathematik.
[114] V. Bogachev. Gaussian Measures on a , 2022 .
[115] Ronald R. Coifman,et al. Regularization on Graphs with Function-adapted Diffusion Processes , 2008, J. Mach. Learn. Res..
[116] Anirban Dasgupta,et al. Sampling algorithms and coresets for ℓp regression , 2007, SODA '08.
[117] Alexandre d'Aspremont,et al. Subsampling algorithms for semidefinite programming , 2008, 0803.1990.
[118] Christos Boutsidis,et al. Unsupervised feature selection for principal components analysis , 2008, KDD.
[119] Xilin Shen,et al. Low-dimensional embedding of fMRI datasets , 2007, NeuroImage.
[120] S. Shalev-Shwartz. Low ` 1-Norm and Guarantees on Sparsifiability , 2008 .
[121] Nir Ailon,et al. Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes , 2008, SODA '08.
[122] S. Muthukrishnan,et al. Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..
[123] Nikhil Srivastava,et al. Graph sparsification by effective resistances , 2008, SIAM J. Comput..
[124] J. Tropp. On the conditioning of random subdictionaries , 2008 .
[125] V. Rokhlin,et al. A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.
[126] Christos Boutsidis,et al. Random Projections for the Nonnegative Least-Squares Problem , 2008, ArXiv.
[127] Patrick J. Wolfe,et al. On sparse representations of linear operators and the approximation of matrix products , 2007, 2008 42nd Annual Conference on Information Sciences and Systems.
[128] Amit Singer,et al. Dense Fast Random Projections and Lean Walsh Transforms , 2008, APPROX-RANDOM.
[129] Mark Tygert,et al. A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..
[130] Trac D. Tran,et al. A fast and efficient algorithm for low-rank approximation of a matrix , 2009, STOC '09.
[131] S. Zucker,et al. Accelerated dense random projections , 2009 .
[132] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[133] David P. Woodruff,et al. Numerical linear algebra in the streaming model , 2009, STOC '09.
[134] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[135] D. Needell. Randomized Kaczmarz solver for noisy linear systems , 2009, 0902.0958.
[136] Alex Gittens,et al. Error Bounds for Random Matrix Approximation Schemes , 2009, 0911.4108.
[137] Christos Boutsidis,et al. An improved approximation algorithm for the column subset selection problem , 2008, SODA.
[138] Malik Magdon-Ismail,et al. On selecting a maximum volume sub-matrix of a matrix and related problems , 2009, Theor. Comput. Sci..
[139] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[140] Luis Rademacher,et al. Efficient Volume Sampling for Row/Column Subset Selection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[141] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[142] Nathan Halko,et al. An Algorithm for the Principal Component Analysis of Large Data Sets , 2010, SIAM J. Sci. Comput..
[143] C. Chui,et al. Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .
[144] Joel A. Tropp,et al. Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..
[145] Vladimir Rokhlin,et al. Randomized approximate nearest neighbors algorithm , 2011, Proceedings of the National Academy of Sciences.
[146] S. Muthukrishnan,et al. Faster least squares approximation , 2007, Numerische Mathematik.
[147] Amit Singer,et al. Dense Fast Random Projections and Lean Walsh Transforms , 2008, APPROX-RANDOM.
[148] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[149] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..