On Model Parallelization and Scheduling Strategies for Distributed Machine Learning
暂无分享,去创建一个
Seunghak Lee | Eric P. Xing | Xun Zheng | Garth A. Gibson | Jin Kyu Kim | Qirong Ho | E. Xing | Qirong Ho | Seunghak Lee | Jin Kyu Kim | Xun Zheng
[1] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[2] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[3] Sanjay Ghemawat,et al. MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.
[4] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[5] James Bennett,et al. The Netflix Prize , 2007 .
[6] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[7] Dennis M. Wilkinson,et al. Large-Scale Parallel Collaborative Filtering for the Netflix Prize , 2008, AAIM.
[8] Yichao Wu,et al. Ultrahigh Dimensional Feature Selection: Beyond The Linear Model , 2009, J. Mach. Learn. Res..
[9] John Langford,et al. Slow Learners are Fast , 2009, NIPS.
[10] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[11] Max Welling,et al. Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..
[12] Joseph E. Gonzalez,et al. GraphLab: A New Parallel Framework for Machine Learning , 2010 .
[13] Alexander J. Smola,et al. Parallelized Stochastic Gradient Descent , 2010, NIPS.
[14] Scott Shenker,et al. Spark: Cluster Computing with Working Sets , 2010, HotCloud.
[15] Joseph K. Bradley,et al. Parallel Coordinate Descent for L1-Regularized Loss Minimization , 2011, ICML.
[16] Arthur Gretton,et al. Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees , 2011, AISTATS.
[17] Peter J. Haas,et al. Large-scale matrix factorization with distributed stochastic gradient descent , 2011, KDD.
[18] Marc'Aurelio Ranzato,et al. Large Scale Distributed Deep Networks , 2012, NIPS.
[19] Carlos Guestrin,et al. Distributed GraphLab : A Framework for Machine Learning and Data Mining in the Cloud , 2012 .
[20] Alexander J. Smola,et al. Scalable inference in latent variable models , 2012, WSDM '12.
[21] Ambuj Tewari,et al. Feature Clustering for Accelerating Parallel Coordinate Descent , 2012, NIPS.
[22] Inderjit S. Dhillon,et al. Scalable Coordinate Descent Approaches to Parallel Matrix Factorization for Recommender Systems , 2012, 2012 IEEE 12th International Conference on Data Mining.
[23] Joseph Gonzalez,et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs , 2012, OSDI.
[24] Garth A. Gibson,et al. PRObE: A Thousand-Node Experimental Cluster for Computer Systems Research , 2013, login Usenix Mag..
[25] Seunghak Lee,et al. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server , 2013, NIPS.
[26] Marc'Aurelio Ranzato,et al. Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[27] Eric P. Xing,et al. Consistent Bounded-Asynchronous Parameter Servers for Distributed ML , 2013, ArXiv.
[28] Timothy Baldwin,et al. On collocations and topic models , 2013, TSLP.
[29] Alexander J. Smola,et al. Scaling Distributed Machine Learning with the Parameter Server , 2014, OSDI.
[30] Yang Gao,et al. Towards Topic Modeling for Big Data , 2014, ArXiv.
[31] Eric P. Xing,et al. High-Performance Distributed ML at Scale through Parameter Server Consistency Models , 2014, AAAI.