Images from Galileo of the Venus Cloud Deck

Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

[1]  James R. Janesick,et al.  Charge-Coupled Device Television Camera For Nasa's Galileo Mission To Jupiter , 1984 .

[2]  W. Rossow,et al.  Planetary-Scale Waves and the Cyclic Nature of Cloud Top Dynamics on Venus , 1990 .

[3]  Brian O'Leary,et al.  Venus: Vertical Structure of Stratospheric Hazes from Mariner 10 Pictures , 1975 .

[4]  Michael J. S. Belton,et al.  Cloud Patterns, Waves and Convection in the Venus Atmosphere , 1976 .

[5]  K. Hodapp,et al.  The Nature of the Near-Infrared Features on the Venus Night Side , 1989, Science.

[6]  W. Irvine Monochromatic phase curves and albedos for Venus. , 1968 .

[7]  L. Travis,et al.  Cloud morphology and motions from Pioneer Venus images , 1980 .

[8]  B. Hapke,et al.  Light scattering in a spherical, exponential atmosphere, with applications to Venus , 1985 .

[9]  M E Davies,et al.  Venus: Atmospheric Motion and Structure from Mariner 10 Pictures , 1974, Science.

[10]  W. E. Howell,et al.  Laboratory simulation of Venusian lightning , 1983 .

[11]  D. Crisp Radiative forcing of the Venus mesosphere. II - Thermal fluxes, cooling rates, and radiative equilibrium temperatures , 1989 .

[12]  M. Tomasko,et al.  Nature of the stratospheric haze on Uranus: Evidence for condensed hydrocarbons , 1987 .

[13]  V. M. Linkin,et al.  VEGA Balloon Dynamics and Vertical Winds in the Venus Middle Cloud Region , 1986, Science.

[14]  J. Crawford,et al.  Cloud structure on the dark side of Venus , 1984, Nature.

[15]  Verner E. Suomi,et al.  Cloud motions on Venus - Global structure and organization , 1981 .

[16]  W. Borucki,et al.  Lightning generation in planetary atmospheres , 1983 .

[17]  F. H. Newell,et al.  United States Geological Survey , 1900, Nature.

[18]  D. Hunten,et al.  The microphysics of the clouds of Venus: Results of the Pioneer Venus Particle Size Spectrometer Experiment , 1980 .

[19]  S. Limaye,et al.  Venus: Cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images: II. Solar longitude dependent circulation , 1988 .

[20]  D. Crisp Radiative forcing of the Venus mesosphere: I. Solar fluxes and heating rates , 1986 .

[21]  P. J. Schinder,et al.  Waves, advection, and cloud patterns on Venus , 1990 .

[22]  D. Hunten,et al.  Planetary lightning: Earth, Jupiter, and Venus , 1983 .

[23]  A. Ingersoll,et al.  Radiative instability of a cloudy planetary atmosphere. , 1973 .

[24]  W. Rossow,et al.  Cloud-Tracked Winds from Pioneer Venus OCPP Images , 1990 .

[25]  Makoto Sato,et al.  Cloud and haze properties from Pioneer Venus polarimetry , 1980 .

[26]  M. Belton,et al.  Space-time relationships in the UV markings on Venus , 1976 .

[27]  C. Grund,et al.  Zonal mean circulation at the cloud level on Venus - Spring and fall 1979 OCPP observations. [Orbiter Cloud Photo Polarimeter] , 1982 .

[28]  T. Johnson,et al.  The Galileo Venus Encounter , 1991, Science.

[29]  J. Hansen,et al.  Orbiter Cloud Photopolarimeter Investigation , 1979, Science.