ROLE OF CHEMOMETRICS FOR ELECTROCHEMICAL SENSORS

ABSTRACT A review on multivariate chemometric methods used in electrochemistry is presented. Some perspectives and new proposals for applications of different chemometric tools in electrochemistry are given. The main goal is to show advantages of particular chemometric techniques for analysis of some data obtained in electrochemistry and electrochemical sensors. This work focuses on multivariate calibration, classification, pattern recognition, and signal processing.

[1]  Wolfgang Göpel,et al.  Characterisation of food freshness with sensor arrays , 1994 .

[2]  I. McKelvie,et al.  Real-time instrumentation for monitoring water quality: An Australian perspective , 1993 .

[3]  Evor L. Hines,et al.  Detection of vapours and odours from a multisensor array using pattern-recognition techniques Part 2. Artificial neural networks , 1992 .

[4]  Udo Weimar,et al.  A modified multilayer perceptron model for gas mixture analysis , 1993 .

[5]  Massimo Riani,et al.  Monitoring reliability of sensors in an array by neural networks , 2000 .

[6]  S. Mikkelsen,et al.  Chemometric analysis of square wave voltammograms for classification and quantitation of untreated beverage samples , 2000 .

[7]  José Luis Pérez Pavón,et al.  Classification of vegetable oils by linear discriminant analysis of Electronic Nose data , 1999 .

[8]  Pietro Siciliano,et al.  Analysis of vapours and foods by means of an electronic nose based on a sol–gel metal oxide sensors array , 2000 .

[9]  Yoshinobu Matsuura,et al.  Toward the realization of an intelligent gas sensing system utilizing a non-linear dynamic response , 2000 .

[10]  Matteo Ferroni,et al.  Quantification of H2S and NO2 using gas sensor arrays and an artificial neural network , 1997 .

[11]  I. González-Martín,et al.  Differentiation of products derived from Iberian breed swine by electronic olfactometry (electronic nose). , 2000 .

[12]  David Bull,et al.  A connectionist approach to fuel cell sensor array processing for gas discrimination , 1993 .

[13]  Duk-Dong Lee,et al.  Pattern recognition of gas sensor array using characteristics of impedance , 2001 .

[14]  J. Grate,et al.  A method for chemometric classification of unknown vapors from the responses of an array of volume-transducing sensors. , 2001, Analytical chemistry.

[15]  J. Brezmes,et al.  Neural network based electronic nose for the classification of aromatic species , 1997 .

[16]  Antonella Macagnano,et al.  Multicomponent analysis on polluted waters by means of an electronic tongue , 1997 .

[17]  Kiyoshi Toko,et al.  Evaluation of water quality and pollution using multichannel sensors , 2000 .

[18]  Przemyslaw M. Szecowka,et al.  Simultaneous quantification of carbon monoxide and methane in humid air using a sensor array and an artificial neural network , 1997 .

[19]  H. Lüth,et al.  Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions , 2001 .

[20]  P Ertl,et al.  Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. , 2001, Analytical chemistry.

[21]  Corrado Di Natale,et al.  Multicomponent analysis of heavy metal cations and inorganic anions in liquids by a non-selective chalcogenide glass sensor array , 1996 .

[22]  J. Marty,et al.  Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. , 2000, Biosensors & bioelectronics.

[23]  Paul Geladi,et al.  Chemometric analysis of multisensor arrays , 1986 .

[24]  A. Lobanov,et al.  Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective microbial sensor and a glucose enzyme electrode. , 1998, Biosensors & bioelectronics.

[25]  S. Rose-Pehrsson,et al.  A comparison study of chemical sensor array pattern recognition algorithms , 1999 .

[26]  Anne-Claude Romain,et al.  Use of a simple tin oxide sensor array to identify five malodours collected in the field , 2000 .

[27]  I. Lundström,et al.  An electronic tongue based on voltammetry , 1997 .

[28]  Kenshi Hayashi,et al.  Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor , 2001 .

[29]  Julian W. Gardner,et al.  Preliminary investigation of breath sampling as a monitor of health in dairy cattle , 1997 .

[30]  Duk-Dong Lee,et al.  Heating power-controlled micro-gas sensor array , 2001 .

[31]  Kazunori Sugahara,et al.  IMPROVEMENT OF CONCENTRATION-ESTIMATION ALGORITHM FOR INFLAMMABLE GASES UTILIZING FUZZY RULE-BASED NEURAL NETWORKS , 1999 .

[32]  Christopher M.A. Brett,et al.  Electrochemistry: Principles, Methods, and Applications , 1993 .

[33]  M. DeGrandpre,et al.  Redundant chemical sensors for calibration-impossible applications. , 2001, Talanta.

[34]  D J Choi,et al.  A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process. , 2001, Water research.

[35]  Y. Vlasov,et al.  Multisensor system on the basis of an array of non-specific chemical sensors and artificial neural networks for determination of inorganic pollutants in a model groundwater. , 2001, Talanta.

[36]  Gerd Sulz,et al.  Thin-film SnO2 sensor arrays controlled by variation of contact potential—a suitable tool for chemometric gas mixture analysis in the TLV range , 1997 .

[37]  Sang-Woo Ban,et al.  Explosive gas recognition system using thick film sensor array and neural network , 2000 .

[38]  A. Walmsley,et al.  Evaluation of chemometric techniques for the identification and quantification of solvent mixtures using a thin-film metal oxide sensor array , 1991 .

[39]  Tim C. Pearce,et al.  A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers , 1994 .

[40]  M. C. Oliveros,et al.  Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils , 2001 .

[41]  J. Brezmes,et al.  Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array , 1997 .

[42]  Udo Weimar,et al.  Pulsed mode of operation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensors , 2000 .

[43]  I. A. Borisov,et al.  Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. , 2001, Biosensors & bioelectronics.

[44]  Alisa Rudnitskaya,et al.  A flow injection system based on chalcogenide glass sensors for the determination of heavy metals , 2000 .

[45]  Denise Wilson,et al.  Multilevel pattern recognition architectures for localization of mixed chemical/auditory stimuli , 2000 .

[46]  Arnaldo D'Amico,et al.  Self-organizing multisensor systems for odour classification: internal categorization, adaptation and drift rejection , 1994 .

[47]  Corrado Di Natale,et al.  Pattern recognition in gas sensing: well-stated techniques and advances , 1995 .

[48]  Johanna Smeyers-Verbeke,et al.  Handbook of Chemometrics and Qualimetrics: Part A , 1997 .

[49]  C Di Natale,et al.  Self-organising sensory maps in odour classification mimicking. , 1995, Biosensors & bioelectronics.

[50]  Duk-Dong Lee,et al.  Recognition of volatile organic compounds using SnO2 sensor array and pattern recognition analysis , 2001 .

[51]  D. Wienke,et al.  Analysis of ternary mixtures with a single dynamic microbial sensor and chemometrics using a nonlinear multivariate calibration. , 2000, Analytical chemistry.

[52]  Fabrizio Davide,et al.  A composed neural network for the recognition of gas mixtures , 1995 .

[53]  Guido Faglia,et al.  Improvement in signal evaluation methods for semiconductor gas sensors , 1995 .

[54]  Larisa Lvova,et al.  Chemical sensor array for multicomponent analysis of biological liquids , 1999 .

[55]  Giorgio Sberveglieri,et al.  A systematic investigation on the use of time-dependent sensor signals in signal-processing techniques , 1995 .

[56]  H. V. Shurmer,et al.  Odour discrimination with an electronic nose , 1992 .

[57]  W. Carey,et al.  Multivariate sensor arrays as industrial and environmental monitoring systems , 1994 .

[58]  F. Winquist,et al.  Compression of electronic tongue data based on voltammetry — a comparative study , 2001 .

[59]  C. Mello,et al.  Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool , 2000 .

[60]  Rolf D. Schmid,et al.  A disposable multielectrode biosensor for rapid simultaneous detection of the insecticides paraoxon and carbofuran at high resolution , 1999 .

[61]  M. Freund,et al.  Chemically diverse modified electrodes : A new approach to the design and implementation of sensor arrays , 1999 .

[62]  I. Lundström,et al.  On-line monitoring of a cultivation using an electronic nose , 1998 .

[63]  Wang Ping,et al.  A novel recognition method for electronic nose using artificial neural network and fuzzy recognition , 1996 .

[64]  I. Lundström,et al.  Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review , 2001 .

[65]  Karl Cammann Sources of systematic errors in chemical sensor chemometrics , 1995 .

[66]  M. B. De Souza,et al.  Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks , 2001 .

[67]  P. Mars,et al.  Vapour recognition using organic films and artificial neural networks , 1994 .

[68]  J. Saurina,et al.  Determination of calcium and total hardness in natural waters using a potentiometric sensor array , 2002 .

[69]  J. Amador-Hernández,et al.  Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition , 2001 .

[70]  Ingemar Lundström,et al.  Neural networks and abductive networks for chemical sensor signals: a case comparison , 1995 .

[71]  Fabrizio Davide,et al.  Different strategies for the identification of gas sensing systems , 1996 .

[72]  Thaddeus A. Roppel,et al.  Rank extraction in tin-oxide sensor arrays , 2000 .

[73]  M. Forina,et al.  Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils , 2002 .

[74]  Kaushal K. Shukla,et al.  ADAPTIVE RESONANCE NEURAL CLASSIFIER FOR IDENTIFICATION OF GASES/ODOURS USING AN INTEGRATED SENSOR ARRAY , 1998 .

[75]  Naresh Magan,et al.  Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data , 2000 .

[76]  T. Eklöv,et al.  Enhanced selectivity of MOSFET gas sensors by systematical analysis of transient parameters , 1997 .

[77]  Yung Kwon Sung,et al.  Portable electronic nose system with gas sensor array and artificial neural network , 2000 .

[78]  F. Winquist,et al.  Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms , 2001 .