Modeling Primary Atomization

This review concerns recent progress in primary atomization modeling. The numerical approaches based on direct simulation are described first. Although direct numerical simulation (DNS) offers the potential to study the physical processes during primary atomization in detail, thereby supplementing experimental diagnostics, it also introduces severe numerical challenges. We outline these challenges and the numerical methods to address them, highlighting some recent efforts in performing detailed simulation of the primary atomization process. The second part is devoted to phenomenological models of primary atomization. Because earlier conventional models of breakup are well reported in the available literature, we highlight only two recent developments: (a) stochastic simulation of the liquid jet depletion in the framework of fragmentation under scaling symmetry and (b) primary atomization in terms of Reynolds-averaged Navier-Stokes (RANS) mixing with a strong variation of density.

[1]  S. Yoon,et al.  A nonlinear atomization model based on a boundary layer instability mechanism , 2004 .

[2]  Kazuhiko Suga,et al.  A numerical study on the breakup process of laminar liquid jets into a gas , 2006 .

[3]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[4]  H. Herrmann,et al.  Statistical models for the fracture of disordered media. North‐Holland, 1990, 353 p., ISBN 0444 88551x (hardbound) US $ 92.25, 0444 885501 (paperback) US $ 41.00 , 1990 .

[5]  P.-K. Wu,et al.  AERODYNAMIC EFFECTS ON PRIMARY BREAKUP OF TURBULENT LIQUIDS , 1993 .

[6]  R. Reitz Modeling atomization processes in high-pressure vaporizing sprays , 1987 .

[7]  Emmanuel Villermaux,et al.  Mixing and Spray Formation in Coaxial Jets , 1998 .

[8]  J. Lasheras,et al.  Liquid Jet Instability and Atomization in a Coaxial Gas Stream , 2000 .

[9]  H. Chaves Characterization of cavitation in transparent nozzles depending on the nozzle geometry , 2005 .

[10]  Emil J. Hopfinger,et al.  Flow regimes of large-velocity-ratio coaxial jets , 1997, Journal of Fluid Mechanics.

[11]  Modeling of Two-Phase Flows: An Eulerian Model for Diesel Injection , 2004 .

[12]  A. F. Filippov On the Distribution of the Sizes of Particles which Undergo Splitting , 1961 .

[13]  Franz X. Tanner DEVELOPMENT AND VALIDATION OF A CASCADE ATOMIZATION AND DROP BREAKUP MODEL FOR HIGH-VELOCITY DENSE SPRAYS , 2004 .

[14]  R. Reitz,et al.  MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL , 1999 .

[15]  P. Wesseling,et al.  A mass‐conserving Level‐Set method for modelling of multi‐phase flows , 2005 .

[16]  Mikhael Gorokhovski,et al.  Statistical universalities in fragmentation under scaling symmetry with a constant frequency of fragmentation , 2008 .

[17]  Mikhael Gorokhovski,et al.  Analyses of Kolmogorov’s model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization , 2003 .

[18]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[19]  R. Reitz,et al.  Measurements of drop size at the spray edge near the nozzle in atomizing liquid jets , 1986 .

[20]  Ludovic Raynal,et al.  Instabilité et entrainement à l'interface d'une couche de mélange liquide-gaz , 1997 .

[21]  F. X. Demoulin,et al.  Coupling Vaporization Model With the Eulerian-Lagrangian Spray Atomization (ELSA) Model in Diesel Engine Conditions , 2005 .

[22]  Stephen D. Heister,et al.  A nonlinear atomization model for computation of drop size distributions and spray simulations , 2005 .

[23]  J. Whitelaw,et al.  Breakup phenomena in coaxial airblast atomizers , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  Log-stable laws as asymptotic solutions to a fragmentation equation: application to the distribution of droplets in a high Weber-number spray. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  R. W. Bilger,et al.  Turbulent flows with nonpremixed reactants , 1980 .

[26]  Bruce Chehroudi,et al.  THE FRACTAL GEOMETRY OF ROUND TURBULENT CRYOGENIC NITROGEN JETS AT SUBCRITICAL AND SUPERCRITICAL PRESSURES , 2004 .

[27]  Gian Marco Bianchi,et al.  3D Large Scale Simulation of the High-Speed Liquid Jet Atomization , 2007 .

[28]  R. Ziff,et al.  "Shattering" transition in fragmentation. , 1987, Physical review letters.

[29]  Marco Badami,et al.  Cavitation in real-size, multi-hole diesel injector nozzles , 2000 .

[30]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Dimotakis Two-dimensional shear-layer entrainment , 1986 .

[32]  Robert M. Ziff,et al.  New solutions to the fragmentation equation , 1991 .

[33]  Atomisation d'un jet liquide par un courant gazeux , 2001 .

[34]  M. Gorokhovski,et al.  Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow , 2006 .

[35]  B. Engquist,et al.  Discretization of Dirac delta functions in level set methods , 2005 .

[36]  P. Moin,et al.  LES of atomizing spray with stochastic modeling of secondary breakup , 2002 .

[37]  N. Chigier,et al.  FRACTAL DIMENSIONS OF LIQUID JET INTERFACE UNDER BREAKUP , 1995 .

[38]  S. Zaleski,et al.  Improving the Knowledge of High-Speed Liquid Jets Atomization by Using Quasi-Direct 3D Simulation , 2005 .

[39]  Emil J. Hopfinger,et al.  Break-up and atomization of a round water jet by a high-speed annular air jet , 1998, Journal of Fluid Mechanics.

[40]  Rolf D. Reitz,et al.  MODELING THE PRIMARY BREAKUP OF HIGH-SPEED JETS , 2004 .

[41]  M. Gorokhovski,et al.  Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  M. Hong Atomisation et mélange dans les jets coaxiaux liquide-gaz , 2003 .

[43]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[44]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[45]  Emil J. Hopfinger,et al.  Initial breakup of a small-diameter liquid jet by a high-speed gas stream , 2003, Journal of Fluid Mechanics.

[46]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[47]  C. Arcoumanis,et al.  LINKING NOZZLE FLOW WITH SPRAY CHARACTERISTICS IN A DIESEL FUEL INJECTION SYSTEM , 1998 .

[48]  S. Jay,et al.  Combined surface density concepts for dense spray combustion , 2006 .

[49]  Matthew W. Williams,et al.  A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework , 2006, J. Comput. Phys..

[50]  Hans Edelmann,et al.  Vier Woodbury-Formeln hergeleitet aus dem Variablentausch einer speziellen Matrix , 1976 .

[51]  Thierry Baritaud,et al.  MODELING ATOMIZATION AND BREAK UP IN HIGH-PRESSURE DIESEL SPRAYS , 1997 .

[52]  A. Sadiki,et al.  A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations , 2003 .

[53]  Jie Li,et al.  Ligament formation in sheared liquid–gas layers , 2006 .

[54]  Manolis Gavaises,et al.  Effect of Fuel Injection Processes on the Structure of Diesel Sprays , 1997 .

[55]  Parviz Moin,et al.  The Primary Breakup of a Round Liquid Jet by a Coaxial Flow of Gas , 2007 .

[56]  A. D. Gosman,et al.  Large Eddy Simulation of Primary Diesel Spray Atomization , 2004 .

[57]  R. Reitz,et al.  Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission , 1998 .

[58]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[59]  P.-A. Beau,et al.  Applying Quasi-Multiphase Model to Simulate Atomization Processes in Diesel Engines: Modeling of the Slip Velocity , 2005 .

[60]  Song-Charng Kong,et al.  Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines , 1999 .

[61]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[62]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[63]  W. Rodi A new algebraic relation for calculating the Reynolds stresses , 1976 .

[64]  P.-K. Wu,et al.  Primary breakup in gas/liquid mixing layers for turbulent liquids , 1992 .

[65]  Philippe Marmottant,et al.  On spray formation , 2004, Journal of Fluid Mechanics.

[66]  A. Burluka,et al.  DEVELOPMENT OF A EULERIAN MODEL FOR THE “ATOMIZATION” OF A LIQUID JET , 2001 .

[67]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[68]  M. Gorokhovski,et al.  The extended IEM mixing model in the framework of the composition PDF approach: applications to diesel spray combustion , 2006 .

[69]  M. Renardy,et al.  PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method , 2002 .

[70]  Romain Lebas,et al.  Modélisation Eulérienne de l'Atomisation Haute Pression - Influences sur la Vaporisation et la Combustion Induite , 2007 .

[71]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[72]  S. Redner,et al.  Kinetics of fragmentation , 1990 .

[73]  Z. Dai,et al.  Liquid breakup at the surface of turbulent round liquid jets in still gases , 2002 .

[74]  G. Faeth,et al.  Structure and breakup properties of sprays , 1995 .

[75]  Robert M. Ziff,et al.  The kinetics of cluster fragmentation and depolymerisation , 1985 .

[76]  M. Sussman A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles , 2003 .

[77]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[78]  F. X. Demoulin,et al.  A new model for turbulent flows with large density fluctuations : application to liquid atomization , 2007 .

[79]  Suk Goo Yoon,et al.  Droplet distributions at the liquid core of a turbulent spray , 2005 .

[80]  Sidney Redner Statistical Theory of Fragmentation , 1990 .

[81]  Zoltan Farago,et al.  MORPHOLOGICAL CLASSIFICATION OF DISINTEGRATION OF ROUND LIQUID JETS IN A COAXIAL AIR STREAM , 1992 .

[82]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[83]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[84]  Multifractality of drop breakup in the air-blast nozzle atomization process. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  P. Colella,et al.  Non-convex profile evolution in two dimensions using volume of fluids , 1997 .

[86]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[87]  Alfred Leipertz,et al.  Investigation of cavitation in real size diesel injection nozzles , 1999 .

[88]  Theo G. Theofanous,et al.  High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set , 2007, J. Comput. Phys..

[89]  F. E. Marble,et al.  The coherent flame model for turbulent chemical reactions. Final report 1 Mar 75--31 Jan 77 , 1977 .

[90]  Markus Klein,et al.  Direct numerical simulation of a spatially developing water sheet at moderate Reynolds number , 2005 .

[91]  Ronald Fedkiw,et al.  On Boundary Condition Capturing for Multiphase Interfaces , 2007, J. Sci. Comput..

[92]  Cheng,et al.  Scaling theory of fragmentation. , 1988, Physical review letters.

[93]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[94]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .