Cortical region interactions and the functional role of apical dendrites.

The basal and distal apical dendrites of pyramidal cells occupy distinct cortical layers and are targeted by axons originating in different cortical regions. Hence, apical and basal dendrites receive information from distinct sources. Physiological evidence suggests that this anatomically observed segregation of input sources may have functional significance. This possibility has been explored in various connectionist models that employ neurons with functionally distinct apical and basal compartments. A neuron in which separate sets of inputs can be integrated independently has the potential to operate in a variety of ways not possible for the conventional neuron model, in which all inputs are treated equally. This article thus considers how functionally distinct apical and basal dendrites can contribute to the information-processing capacities of single neurons and, in particular, how information from different cortical regions could have disparate effects on neural activity and learning.

[1]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[2]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[3]  H. C. LONGUET-HIGGINS,et al.  Non-Holographic Associative Memory , 1969, Nature.

[4]  Teuvo Kohonen,et al.  Correlation Matrix Memories , 1972, IEEE Transactions on Computers.

[5]  Braitenberg,et al.  Cortical architectonics: General and areal , 1978 .

[6]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[7]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[8]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[9]  James L. McClelland,et al.  James L. McClelland, David Rumelhart and the PDP Research Group, Parallel distributed processing: explorations in the microstructure of cognition . Vol. 1. Foundations . Vol. 2. Psychological and biological models . Cambridge MA: M.I.T. Press, 1987. , 1989, Journal of Child Language.

[10]  F. H. C. Crick,et al.  Certain aspects of the anatomy and physiology of the cerebral cortex , 1986 .

[11]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[12]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[13]  K. Fukushima Neural network model for selective attention in visual pattern recognition and associative recall. , 1987, Applied optics.

[14]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: part 1.: an account of basic findings , 1988 .

[15]  Bartlett W. Mel,et al.  Sigma-Pi Learning: On Radial Basis Functions and Cortical Associative Learning , 1989, NIPS.

[16]  David E. Rumelhart,et al.  Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks , 1989, Neural Computation.

[17]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[18]  Geoffrey E. Hinton,et al.  Self-organizing neural network that discovers surfaces in random-dot stereograms , 1992, Nature.

[19]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[20]  Virginia R. de Sa,et al.  Learning Classification with Unlabeled Data , 1993, NIPS.

[21]  Matthew L. Shapiro,et al.  Simulating Hebb cell assemblies: the necessity for partitioned dendritic trees and a post-not-pre LTD rule , 1993 .

[22]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[24]  R. Moller,et al.  Perception through anticipation , 1994, Proceedings of PerAc '94. From Perception to Action.

[25]  Horace Barlow,et al.  What is the computational goal of the neocortex , 1994 .

[26]  Daniel Johnston,et al.  Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties , 1994, Trends in Neurosciences.

[27]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[28]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[29]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[30]  L. Cauller Layer I of primary sensory neocortex: where top-down converges upon bottom-up , 1995, Behavioural Brain Research.

[31]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[32]  R. Andersen,et al.  Head position signals used by parietal neurons to encode locations of visual stimuli , 1995, Nature.

[33]  Horst-Michael Groß,et al.  Possible Functional Roles of the Bipartite Dendrites of Pyramidal Cells , 1995, SNN Symposium on Neural Networks.

[34]  Jim Kay,et al.  The discovery of structure by multi-stream networks of local processors with contextual guidance , 1995 .

[35]  David Mumford,et al.  Neuronal Architectures for Pattern-theoretic Problems , 1995 .

[36]  Robert Miller,et al.  Neural assemblies and laminar interactions in the cerebral cortex , 1996, Biological Cybernetics.

[37]  L. Abbott,et al.  A model of multiplicative neural responses in parietal cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Martin Ebdon Towards a General Theory of Cerebral Neocortex , 1996 .

[39]  Geoffrey E. Hinton,et al.  Varieties of Helmholtz Machine , 1996, Neural Networks.

[40]  A. Burkhalter,et al.  Different Balance of Excitation and Inhibition in Forward and Feedback Circuits of Rat Visual Cortex , 1996, The Journal of Neuroscience.

[41]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[42]  Suzanna Becker,et al.  Mutual information maximization: models of cortical self-organization. , 1996, Network.

[43]  Randall C. O'Reilly,et al.  Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm , 1996, Neural Computation.

[44]  W. Singer,et al.  In search of common foundations for cortical computation , 1997, Behavioral and Brain Sciences.

[45]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[46]  A. Burkhalter,et al.  A Polysynaptic Feedback Circuit in Rat Visual Cortex , 1997, The Journal of Neuroscience.

[47]  James V. Stone,et al.  Unsupervised discovery of invariances , 1997 .

[48]  L. Abbott,et al.  Invariant visual responses from attentional gain fields. , 1997, Journal of neurophysiology.

[49]  Jim Kay,et al.  Activation Functions, Computational Goals, and Learning Rules for Local Processors with Contextual Guidance , 1997, Neural Computation.

[50]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[51]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[52]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[53]  Hiroshi Tsujino,et al.  A Cortical-type Modular Neural Network for Hypothetical Reasoning , 1997, Neural Networks.

[54]  Geoffrey E. Hinton,et al.  Generative models for discovering sparse distributed representations. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[56]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[57]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[58]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[59]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[60]  V. Mountcastle Perceptual Neuroscience: The Cerebral Cortex , 1998 .

[61]  E. Rolls,et al.  Neural networks and brain function , 1998 .

[62]  Dana H. Ballard,et al.  Category Learning Through Multimodality Sensing , 1998, Neural Computation.

[63]  Victor A. F. Lamme,et al.  Feedforward, horizontal, and feedback processing in the visual cortex , 1998, Current Opinion in Neurobiology.

[64]  Idan Segev,et al.  Dendritic processing , 1998 .

[65]  A. Destexhe,et al.  Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: An intracellular and computational study , 1998, Neuroscience.

[66]  R. O’Reilly Six principles for biologically based computational models of cortical cognition , 1998, Trends in Cognitive Sciences.

[67]  Ralf Der,et al.  Local online learning of coherent information , 1998, Neural Networks.

[68]  Kathleen S Rockland,et al.  Complex microstructures of sensory cortical connections , 1998, Current Opinion in Neurobiology.

[69]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[70]  J. Budd Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[72]  Idan Segev,et al.  Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations , 1998, Trends in Neurosciences.

[73]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[74]  Michael W. Spratling Artificial ontogenesis : a connectionist model of development , 1999 .

[75]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[76]  Rajesh P. N. Rao,et al.  An optimal estimation approach to visual perception and learning , 1999, Vision Research.

[77]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[78]  Bartlett W. Mel Why Have Dendrites? A Computational Perspective , 1999 .

[79]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[80]  Edward M. Callaway,et al.  Lamination and Within-Area Integration in the Neocortex , 1999 .

[81]  C. Koch,et al.  Attention activates winner-take-all competition among visual filters , 1999, Nature Neuroscience.

[82]  W A Wickelgren,et al.  Webs, cell assemblies, and chunking in neural nets: introduction. , 1999, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[83]  Eytan Ruppin,et al.  Associative Memory in a Multimodular Network , 1999, Neural Computation.

[84]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[85]  Leslie G. Ungerleider,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[86]  John H. R. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[87]  Karl J. Friston,et al.  Attentional modulation of effective connectivity from V2 to V5/MT in humans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Konrad P. Körding,et al.  A learning rule for dynamic recruitment and decorrelation , 2000, Neural Networks.

[89]  Erratum: Loss of attentional stimulus selection after extrastriate cortical lesions in macaques , 2000, Nature neuroscience.

[90]  N. Spruston,et al.  Diversity and dynamics of dendritic signaling. , 2000, Science.

[91]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[92]  N. Kanwisher,et al.  Visual attention: Insights from brain imaging , 2000, Nature Reviews Neuroscience.

[93]  Konrad Paul Kording,et al.  Learning with two sites of synaptic integration , 2000, Network.

[94]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[95]  Michael W. Spratling,et al.  Learning Synaptic Clusters 2 Learning Synaptic Clusters for Nonlinear Dendritic Processing , 2000 .

[96]  S. Grossberg,et al.  Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex , 2000, Vision Research.

[97]  Paul F. M. J. Verschure,et al.  Local and Global Gating of Synaptic Plasticity , 2000, Neural Computation.

[98]  Konrad P. Körding,et al.  A spike based learning rule for generation of invariant representations , 2000, Journal of Physiology-Paris.

[99]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[100]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[101]  Konrad P. Körding,et al.  Two Sites of Synaptic Integration: Relevant for Learning? , 2000, IJCNN.

[102]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[103]  Konrad P. Körding,et al.  Neurons with Two Sites of Synaptic Integration Learn Invariant Representations , 2001, Neural Computation.

[104]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[105]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[106]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[107]  T. Sejnowski,et al.  Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[108]  Dan Ryder,et al.  The New Associationism: A Neural Explanation for the Predictive Powers of Cerebral Cortex , 2001 .

[109]  M. Häusser,et al.  Synaptic function: Dendritic democracy , 2001, Current Biology.

[110]  T Allison,et al.  Contextual guidance of attention: human intracranial event-related potential evidence for feedback modulation in anatomically early temporally late stages of visual processing. , 2001, Brain : a journal of neurology.

[111]  Carl R Olson,et al.  Object-based vision and attention in primates , 2001, Current Opinion in Neurobiology.

[112]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[113]  Konrad P. Körding,et al.  Supervised and Unsupervised Learning with Two Sites of Synaptic Integration , 2001, Journal of Computational Neuroscience.

[114]  Konrad P. Körding,et al.  Integrating Top-Down and Bottom-Up Sensory Processing by Somato-Dendritic Interactions , 2004, Journal of Computational Neuroscience.