The Software Atom

Abstract By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

[1]  J. Javanainen Effect of State Superpositions Created by Spontaneous Emission on Laser-Driven Transitions , 1992 .

[2]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[3]  Bjarne Stroustrup,et al.  The C++ Programming Language, 4th Edition , 2013 .

[4]  J. Javanainen Polarization gradient cooling in three dimensions: comparison of theory and experiment , 1994 .

[5]  Javanainen Density-matrix equations and photon recoil for multistate atoms. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[6]  J. Ruostekoski,et al.  Observation of suppression of light scattering induced by dipole-dipole interactions in a cold-atom ensemble. , 2014, Physical review letters.

[7]  J. Javanainen Saturation of multistate atoms , 1993 .

[8]  Javanainen Numerical experiments in semiclassical laser-cooling theory of multistate atoms. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[9]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[10]  Janne Ruostekoski,et al.  Shifts of a resonance line in a dense atomic sample. , 2013, Physical review letters.

[11]  S. D. Jenkins,et al.  Optical Resonance Shifts in the Fluorescence of Thermal and Cold Atomic Gases. , 2016, Physical review letters.

[12]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[13]  Mark A. Zentile,et al.  ElecSus: A program to calculate the electric susceptibility of an atomic ensemble , 2014, Comput. Phys. Commun..

[14]  P. Gould,et al.  Measurements of temperature and spring constant in magneto-optical trap , 1994 .

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  J. Ruostekoski,et al.  Collective resonance fluorescence in small and dense atom clouds:Comparison between theory and experiment , 2016, 1606.02757.

[17]  Murray Sargent,et al.  Elements of Quantum Optics , 1991 .