Nodal densities of planar gaussian random waves

Abstract. The nodal densities of gaussian random functions, modelling various physical systems including chaotic quantum eigenfunctions and optical speckle patterns, are reviewed. The nodal domains of isotropically random real and complex functions are formulated in terms of their Minkowski functionals, and their correlations and spectra are discussed. The results on the statistical densities of the zeros of the real and complex functions, and their derivatives, in two dimensions are reviewed. New results are derived on the nodal domains of the hessian determinant (gaussian curvature) of two-dimensional random surfaces.

[1]  J. Zinn-Justin Quantum Field Theory and Critical Phenomena , 2002 .

[2]  K. Berggren,et al.  Distribution of nearest distances between nodal points for the Berry function in two dimensions. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  B. Halperin,et al.  Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns , 1982 .

[4]  R. Adler The Geometry of Random Fields , 2009 .

[5]  Michael V Berry,et al.  Disruption of wavefronts: statistics of dislocations in incoherent Gaussian random waves , 1978 .

[6]  Mitsuo Takeda,et al.  Experimental investigation of local properties and statistics of optical vortices in random wave fields. , 2005, Physical review letters.

[7]  Supporting random wave models: a quantum mechanical approach , 2003, nlin/0304042.

[8]  H. Scher,et al.  Percolation on a Continuum and the Localization-Delocalization Transition in Amorphous Semiconductors , 1971 .

[9]  Kristel Michielsen,et al.  Integral-geometry morphological image analysis , 2001 .

[10]  E. Bogomolny,et al.  Percolation model for nodal domains of chaotic wave functions. , 2001, Physical review letters.

[11]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Parameterization and orbital angular momentum of anisotropic dislocations , 1996 .

[13]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[14]  M. Longuet-Higgins On the intervals between successive zeros of a random function , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  A. Weinrib Percolation threshold of a two-dimensional continuum system , 1982 .

[16]  Mark R. Dennis,et al.  Saddle points in the chaotic analytic function and Ginibre characteristic polynomial , 2002, nlin/0209056.

[17]  Andrew R. Liddle,et al.  Cosmological Inflation and Large-Scale Structure , 2000 .

[18]  M. Wilkinson Screening of charged singularities of random fields , 2004, cond-mat/0402120.

[19]  F. Wolf,et al.  Spontaneous pinwheel annihilation during visual development , 1998, Nature.

[20]  S. Rice Mathematical analysis of random noise , 1944 .

[21]  M. Isichenko Percolation, statistical topography, and transport in random media , 1992 .

[22]  J. Goodman Statistical Optics , 1985 .

[23]  J. Hannay The chaotic analytic function , 1998 .

[24]  M. Dennis,et al.  Correlations between Maxwell's multipoles for Gaussian random functions on the sphere , 2004, math-ph/0410004.

[25]  R. Schubert,et al.  Autocorrelation function of eigenstates in chaotic and mixed systems , 2001, nlin/0106018.

[26]  Mark R. Dennis,et al.  Polarization singularities in paraxial vector fields: morphology and statistics , 2002 .

[27]  Isaac Freund,et al.  Critical-point screening in random wave fields , 1998 .

[28]  M. Longuet-Higgins Statistical properties of an isotropic random surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[29]  E. Heller,et al.  Nodal structure of chaotic eigenfunctions , 2002 .

[30]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[31]  Mark R. Dennis,et al.  Polarization singularities in isotropic random vector waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Uzy Smilansky,et al.  Nodal domains statistics: a criterion for quantum chaos. , 2001, Physical review letters.

[33]  The morphology of nodal lines-random waves versus percolation , 2004, nlin/0407012.

[34]  Mark R. Dennis,et al.  Topological events on wave dislocation lines: birth and death of loops, and reconnection , 2007 .

[35]  M. Longuet-Higgins The statistical distribution of the curvature of a random Gaussian surface , 1958, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  U. Smilansky,et al.  Avoided intersections of nodal lines , 2002, nlin/0212006.

[37]  The distribution of extremal points of Gaussian scalar fields , 2003, math-ph/0301041.

[38]  M. Dennis LETTER TO THE EDITOR: Phase critical point densities in planar isotropic random waves , 2001 .

[39]  G. Foltin Signed zeros of Gaussian vector fields - density, correlation functions and curvature , 2002, cond-mat/0209161.

[40]  P. Brouwer Wave function statistics in open chaotic billiards. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.

[42]  B. Jancovici,et al.  Coulomb systems seen as critical systems: Finite-size effects in two dimensions , 1994 .

[43]  L. Santaló Integral geometry and geometric probability , 1976 .

[44]  Mark R. Dennis,et al.  Phase singularities in isotropic random waves , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Signatures of quantum chaos in the nodal points and streamlines in electron transport through billiards , 1999, chao-dyn/9910011.

[46]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[47]  M. Berry,et al.  Umbilic points on Gaussian random surfaces , 1977 .

[48]  U. Kuhl,et al.  Classical wave experiments on chaotic scattering , 2005 .

[49]  Michael V Berry,et al.  Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature , 2002 .

[50]  P. Dirac Quantised Singularities in the Electromagnetic Field , 1931 .

[51]  F. Stillinger,et al.  General Restriction on the Distribution of Ions in Electrolytes , 1968 .

[52]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[53]  Liu,et al.  Defect-defect correlation in the dynamics of first-order phase transitions. , 1992, Physical review. B, Condensed matter.

[54]  C. T. Wheeler Curved boundary corrections to nodal line statistics in chaotic billiards , 2005 .

[55]  J P Keating,et al.  Nodal domain statistics for quantum maps, percolation, and stochastic Loewner evolution. , 2006, Physical review letters.

[56]  Freund,et al.  Wave-field phase singularities: The sign principle. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[57]  Role of mean free path in spatial phase correlation and nodal screening , 2006, cond-mat/0601706.

[58]  O'Connor,et al.  Properties of random superpositions of plane waves. , 1987, Physical review letters.

[59]  J. F. Nye,et al.  The wave structure of monochromatic electromagnetic radiation , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[60]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[61]  Eric J. Heller,et al.  Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits , 1984 .

[62]  Reflection and Refraction at a Random Moving Surface. III. Frequency of Twinkling in a Gaussian Surface , 1960 .

[63]  Correlations and screening of topological charges in Gaussian random fields , 2003, math-ph/0302024.

[64]  A. Fercher,et al.  First-order Statistics of Stokes Parameters in Speckle Fields , 1981 .

[65]  M. Longuet-Higgins,et al.  The statistical distribution of the maxima of a random function , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.