Preparation and characterization of bilayer carbon/polymer membranes

Abstract The objective of the present research work was to develop a membrane with a high H 2 O/alcohol selectivity for pervaporation and for use in direct alcohol fuel cells. Sulfonated poly (ether ether ketone) (SPEEK) was coated with a thin continuous carbon molecular sieve (CMS) layer. The membranes obtained had 180- and 400-nm thick CMS layers that led to a clear reduction of alcohol crossover. The water/alcohol selectivity increased with the size of the alcohol molecules as follows: methanol

[1]  De-hai Wu,et al.  Influence of the Surface Treatment on the Deposition of Platinum Nanoparticles on the Carbon Nanotubes , 2006 .

[2]  Antonino S. Aricò,et al.  Membranes for portable direct alcohol fuel cells , 2006 .

[3]  W. Koros,et al.  An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials , 2005 .

[4]  David P. Wilkinson,et al.  Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis , 2006 .

[5]  Michael D. Guiver,et al.  Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications , 2000 .

[6]  Zhibing Zhang,et al.  Pervaporation of acetic acid/water mixtures through carbon molecular sieve-filled PDMS membranes , 2004 .

[7]  J. N. Barsema,et al.  Carbon molecular sieve membranes prepared from porous fiber precursor , 2002 .

[8]  Zhongyi Jiang,et al.  Removing benzene from aqueous solution using CMS-filled PDMS pervaporation membranes , 2006 .

[9]  Adélio Mendes,et al.  Characterization and application of composite membranes in DMFC , 2005 .

[10]  Klaus-Viktor Peinemann,et al.  Membrane Technology: in the Chemical Industry , 2001 .

[11]  W. Koros,et al.  Investigation of porosity of carbon materials and related effects on gas separation properties , 2003 .

[12]  S. Joo,et al.  Synthesis and characterization of mesoporous carbon for fuel cell applications , 2007 .

[13]  B. Cooper,et al.  The preparation of selective carbon molecular sieve catalysts , 1970 .

[14]  J. N. Barsema,et al.  Functionalized Carbon Molecular Sieve membranes containing Ag-nanoclusters , 2003 .

[15]  Qingling Liu,et al.  Gas Permeation Properties of Carbon Molecular Sieve Membranes Derived from Novel Poly(phthalazinone ether sulfone ketone) , 2008 .

[16]  J. Hamelin,et al.  Synthesis and Characterization of Carbon Nanostructures as Catalyst Support for PEMFCs , 2007 .

[17]  V. Silva,et al.  Membranes for direct methanol fuel cell based on modified heteropolyacids , 2004 .

[18]  Y. Elabd,et al.  Polymer electrolyte membranes for the direct methanol fuel cell: A review , 2006 .

[19]  Y. Lee,et al.  Preparation and characterization of carbon molecular sieve membranes derived from BTDA-ODA polyimide and their gas separation properties , 2005 .

[20]  Chang-Soo Kim,et al.  Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol–gel process , 2006 .

[21]  May-Britt Hägg,et al.  Carbon Molecular Sieve Membranes , 2003 .

[22]  Y. Lee,et al.  Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone , 2005 .

[23]  H. Kita,et al.  Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin , 2003 .

[24]  A. Mendes,et al.  Carbon molecular sieve membranes: Sorption, kinetic and structural characterization , 2004 .

[25]  T. Zawodzinski,et al.  Surface-modified carbons as platinum catalyst support for PEM fuel cells , 2007 .

[26]  D. A. Smith,et al.  Combined pyrolysis and radiochemical gas chromatography for studying the thermal degradation of epoxide resins and polyimides. II. Degradation of polyimides , 1970 .

[27]  Zhongyi Jiang,et al.  Pervaporation of benzene/cyclohexane mixtures through CMS-filled poly(vinyl alcohol) membranes , 2006 .

[28]  M. Itkis,et al.  High Performance Hydrogen Fuel Cells with Ultralow Pt Loading Carbon Nanotube Thin Film Catalysts , 2007 .

[29]  J. N. Barsema,et al.  Intermediate polymer to carbon gas separation membranes based on matrimid PI , 2004 .

[30]  Y. Lee,et al.  Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes , 2004 .

[31]  B. Cooper,et al.  Propylene hydrogenation over platinum/carbon molecular sieve catalysts , 1973 .

[32]  J. Falconer,et al.  Driving force for pervaporation through zeolite membranes , 2003 .

[33]  Rong Wang,et al.  Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide , 2004 .

[34]  U. Simon,et al.  Low loading Pt cathode catalysts for direct methanol fuel cell derived from the particle size effect , 2007 .

[35]  Karl Schulte,et al.  Polymer nanocomposite membranes for DMFC application , 2005 .

[36]  B. Schulte,et al.  Organic/inorganic composite membranes for application in DMFC , 2003 .

[37]  Kazuya Arai,et al.  Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells , 2004 .

[38]  May-Britt Hägg,et al.  Carbon molecular sieve membranes: a promising alternative for selected industrial applications. , 2003, Annals of the New York Academy of Sciences.

[39]  Michael D. Guiver,et al.  Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides , 2004 .

[40]  R. Mülhaupt,et al.  Partially sulfonated poly(arylene ether sulfone) : a versatile proton conducting membrane material for modern energy conversion technologies , 1993 .

[41]  S. Nunes,et al.  Proton conductive membranes of sulfonated poly(ether ketone ketone) , 2005 .

[42]  H. E. A. Brüschke State‐of‐the‐Art of Pervaporation Processes in the Chemical Industry , 2006 .

[43]  J. Koresh,et al.  Molecular Sieve Carbon Permselective Membrane. Part I. Presentation of a New Device for Gas Mixture Separation , 1983 .

[44]  Rainer Adelung,et al.  Catalytically active CNT–polymer-membrane assemblies: From synthesis to application , 2008 .

[45]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[46]  M. Mulder,et al.  Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications , 2002 .

[47]  A. Zlatkis,et al.  Carbon Molecular Sieve Columns for Trace Analysis in Gas Chromatography , 1970 .

[48]  Y. Lee,et al.  The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups , 2004 .

[49]  V. Silva,et al.  Zirconium oxide hybrid membranes for direct methanol fuel cells—Evaluation of transport properties , 2006 .

[50]  A. S. Aricò,et al.  Pt–Fe cathode catalysts to improve the oxygen reduction reaction and methanol tolerance in direct methanol fuel cells , 2008 .

[51]  Robert C. Haddon,et al.  Proton exchange membrane fuel cells with carbon nanotube based electrodes , 2004 .

[52]  Suzana P. Nunes,et al.  Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells , 2002 .

[53]  Young Moo Lee,et al.  Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties , 2004 .

[54]  A. Soffer,et al.  The Carbon Molecular Sieve Membranes. General Properties and the Permeability of CH4/H2 Mixture , 1987 .

[55]  May-Britt Hägg,et al.  Evaluation of cellulose-derived carbon molecular sieve membranes for hydrogen separation from light hydrocarbons , 2007 .

[56]  D. Fritsch,et al.  Proton-conductive membranes of sulfonated Polyphenylsulfone , 2002 .