STATUS OF FUEL CELL TECHNOLOGIES

[1]  Kevin Kendall,et al.  Chapter 8 – Cell and Stack Designs , 2003 .

[2]  K. Yasuda,et al.  Investigation of PEM type direct hydrazine fuel cell , 2003 .

[3]  Yong Woo Rho,et al.  Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O 2 / He , O 2 / Ar , and O 2 / N 2 Mixtures I . Experimental Analysis , 1994 .

[4]  J. Bockris,et al.  Predominantly Electrochemical Nature of Biological Power-producing Reactions , 1967, Nature.

[5]  Edson A. Ticianelli,et al.  Methods to Advance Technology of Proton Exchange Membrane Fuel Cells , 1988 .

[6]  Supramaniam Srinivasan,et al.  Analysis of proton exchange membrane fuel cell performance with alternate membranes , 1995 .

[7]  Weijiang Zhou Pt based anode catalysts for direct ethanol fuel cells , 2003 .

[8]  J. R. Selman,et al.  The Polarization of Molten Carbonate Fuel Cell Electrodes II . Characterization by AC Impedance and Response to Current Interruption , 1991 .

[9]  A. Appleby Corrosion in Low and High Temperature Fuel Cells—An Overview , 1987 .

[10]  R. W. Glazebrook,et al.  Efficiencies of heat engines and fuel cells: The methanol fuel cell as a competitor to otto and diesel engines , 1982 .

[11]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[12]  K. Yasuda,et al.  Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane , 2003 .

[13]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[14]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[15]  S. Singhal Advances in solid oxide fuel cell technology , 2000 .

[16]  Karl V. Kordesch,et al.  Fuel cells and their applications , 1996 .

[17]  Antonino S. Aricò,et al.  Comparison of Ethanol and Methanol Oxidation in a Liquid‐Feed Solid Polymer Electrolyte Fuel Cell at High Temperature , 1999 .

[18]  Supramaniam Srinivasan,et al.  Research, Development, and Demonstration of Solid Oxide Fuel Cell Systems , 1993 .

[19]  Andrew B. Bocarsly,et al.  Investigation of PEMFC operation above 100 °C employing perfluorosulfonic acid silicon oxide composite membranes , 2002 .

[20]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[21]  Edson A. Ticianelli,et al.  Localization of platinum in low catalyst loading electrodes to to attain high power densities in SPE fuel cells , 1988 .

[22]  Claude Lamy,et al.  Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell (DAFC) , 2001 .

[23]  Andrew B. Bocarsly,et al.  Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells , 2004 .

[24]  U. Stimming,et al.  Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V) , 1997 .

[25]  Supramaniam Srinivasan,et al.  High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes , 1997 .

[26]  Paola Costamagna,et al.  Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , 2001 .

[27]  S. Singhal Solid oxide fuel cells for stationary, mobile, and military applications , 2002 .

[28]  Hiroyuki Uchida,et al.  Analyses of Self‐Humidification and Suppression of Gas Crossover in Pt‐Dispersed Polymer Electrolyte Membranes for Fuel Cells , 1998 .

[29]  Shimshon Gottesfeld,et al.  High performance direct methanol polymer electrolyte fuel cells , 1996 .

[30]  A. Parthasarathy,et al.  High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport , 1991 .

[31]  J. A. A. Ketelaar,et al.  High Temperature Fuel Cells , 1960 .

[32]  B. Børresen,et al.  H2/Cl2 fuel cell for co-generation of electricity and HCl , 2003 .

[33]  J. D. Carter,et al.  Development of Solid‐Oxide Fuel Cells That Operate at 500°C , 1999 .

[34]  C. R. Martin,et al.  Investigations of the O sub 2 reduction reaction at the platinum/Nafion interface using a solid-state electrochemical cell. Technical report , 1991 .

[35]  E. Modica,et al.  Development and operation of a 150 W air-feed direct methanol fuel cell stack , 2001 .

[36]  C. C. McPheeters,et al.  Monolithic solid oxide fuel cell development , 1990 .

[37]  Fuqiang Liu,et al.  Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells , 2003 .

[38]  S. Srinivasan,et al.  An Electrochemically Regenerative Hydrogen‐Chlorine Energy Storage System A Study of Mass and Heat Balances , 1979 .

[39]  Felix N. Büchi,et al.  Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reactant Gases Fundamental Aspects , 1997 .

[40]  N. Giordano,et al.  Nafion Distribution in Gas Diffusion Electrodes for Solid‐Polymer‐Electrolyte‐Fuel‐Cell Applications , 1992 .

[41]  S. Srinivasan,et al.  International activities in DMFC R&D: status of technologies and potential applications , 2004 .

[42]  Seungdoo Park,et al.  Direct Oxidation of Hydrocarbons in a Solid Oxide Fuel Cell: I. Methane Oxidation , 1999 .

[43]  E. Gonzalez,et al.  The Structure of the Double Layer at the Mercury‐Phosphoric Acid Interface from Studies of Adsorption of Thiourea and Its Implications on Oxygen Reduction Kinetics , 1983 .

[44]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[45]  Sanjeev Mukerjee,et al.  Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells , 1993 .

[46]  Jan Van herle,et al.  Ammonia as a fuel in solid oxide fuel cells , 2003 .

[47]  C. Ftikos,et al.  Preparation and characterization of Pr1-xSrxMnO3 ± δ (x = 0, 0.15, 0.3, 0.4, 0.5) as a potential SOFC cathode material operating at intermediate temperatures (500–700 °C) , 1997 .

[48]  C. Chamberlin,et al.  Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation , 1995 .

[49]  Raymond J. Gorte,et al.  Direct Oxidation of Liquid Fuels in a Solid Oxide Fuel Cell , 2001 .

[50]  E. Whitener,et al.  Dissolution of Zirconium in HCl ‐ Methanol , 1962 .

[51]  A Heller,et al.  A miniature biofuel cell. , 2001, Journal of the American Chemical Society.

[52]  S. C. Singhal,et al.  Recent progress in tubular solid oxide fuel cell technology , 1997 .

[53]  J. R. Selman,et al.  Research, Development, and Demonstration of Molten Carbonate Fuel Cell Systems , 1993 .

[54]  G. Tayhas R. Palmore,et al.  Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell , 1999 .

[55]  Z. Ogumi,et al.  Gas Permeation in SPE Method I . Oxygen Permeation Through Nafion and NEOSEPTA , 1984 .

[56]  S. Srinivasan,et al.  Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature , 2001 .

[57]  Supramaniam Srinivasan,et al.  Overview of Fuel Cell Technology , 1993 .

[58]  Raymond J. Gorte,et al.  Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons , 2003 .