Single-cell bacterium identification with a SOI optical microcavity

Photonic crystals and microcavities act as on-chip nano-optical tweezers for identification and manipulation of biological objects. Until now, optical trapping of virus and bacteria has been achieved and their presence in the vicinity of the optical resonator is deduced by the shift in the resonant wavelength. Here, we show trapping and identification of bacteria through a properly tuned silicon on insulator microcavity. Through the spatial and temporal observations of bacteria–cavity interaction, the optical identification of three different kinds of bacteria is demonstrated.

[1]  Lorenzo Pavesi,et al.  Photonic bands and group-velocity dispersion in Si/SiO 2 photonic crystals from white-light interferometry , 2004 .

[2]  P. Fauchet,et al.  Identification of Gram negative bacteria using nanoscale silicon microcavities. , 2001, Journal of the American Chemical Society.

[3]  T. J. Kippenberg,et al.  Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip , 2004 .

[4]  K. Crozier,et al.  Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. , 2013, ACS nano.

[5]  David Erickson,et al.  Nanophotonic detection of freely interacting molecules on a single influenza virus , 2015, Scientific Reports.

[6]  Mattias Goksör,et al.  Optical tweezers applied to a microfluidic system. , 2004, Lab on a chip.

[7]  David Erickson,et al.  A multiplexed optofluidic biomolecular sensor for low mass detection. , 2009, Lab on a chip.

[8]  P. Fauchet,et al.  1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition. , 2012, Analytical chemistry.

[9]  Min Qiu,et al.  Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. , 2004, Optics express.

[10]  Hong Cai,et al.  Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices. , 2010, Optics letters.

[11]  Emmanuel Picard,et al.  Assembly of microparticles by optical trapping with a photonic crystal nanocavity , 2012 .

[12]  Adel Rahmani,et al.  Optical trapping near a photonic crystal. , 2006, Optics express.

[13]  B. Tromberg,et al.  Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. , 1996, Optics letters.

[14]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[15]  P. Fauchet,et al.  Two-dimensional silicon photonic crystal based biosensing platform for protein detection. , 2007, Optics express.

[16]  Marcin Wojdyr,et al.  Fityk: a general-purpose peak fitting program , 2010 .

[17]  Marko Loncar,et al.  Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. , 2008, Optics express.

[18]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[19]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[20]  E. Carstensen,et al.  Refraction and absorption of light in bacterial suspensions , 1966 .

[21]  David Erickson,et al.  Nanomanipulation using silicon photonic crystal resonators. , 2010, Nano letters.

[22]  Vladimir S. Ilchenko,et al.  Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes , 1999 .

[23]  Michael Hochberg,et al.  High-Q ring resonators in thin silicon-on-insulator , 2004 .

[24]  Ethan Schonbrun,et al.  Optical manipulation with planar silicon microring resonators. , 2010, Nano letters.

[25]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[26]  Alain Morand,et al.  High-Q silica microcavities on a chip: From microtoroid to microsphere , 2011 .

[27]  S. Arnold,et al.  Single virus detection from the reactive shift of a whispering-gallery mode , 2008, Proceedings of the National Academy of Sciences.

[28]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[29]  Thijs van Leest,et al.  Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. , 2013, Lab on a chip.

[30]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[31]  P Lalanne,et al.  Ultra-High Q/V Fabry-Perot microcavity on SOI substrate. , 2007, Optics express.

[32]  Jean-Michel Raimond,et al.  Very high-Q whispering-gallery mode resonances observed on fused silica microspheres , 1993 .

[33]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[34]  D. Hanstorp,et al.  Sorting Out Bacterial Viability with Optical Tweezers , 2000, Journal of bacteriology.

[35]  Romuald Houdré,et al.  Single particle detection, manipulation and analysis with resonant optical trapping in photonic crystals. , 2013, Lab on a chip.

[36]  Ryan C Bailey,et al.  High-Q optical sensors for chemical and biological analysis. , 2012, Analytical chemistry.

[37]  Emmanuel Picard,et al.  Optofluidic taming of a colloidal dimer with a silicon nanocavity , 2014 .

[38]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[39]  F. de Fornel,et al.  On chip shapeable optical tweezers , 2013, Scientific Reports.

[40]  P. Deotare,et al.  High quality factor photonic crystal nanobeam cavities , 2009, 0901.4158.

[41]  Emmanuel Picard,et al.  Optofluidic Near-Field Optical Microscopy: Near-Field Mapping of a Silicon Nanocavity Using Trapped Microbeads , 2015 .

[42]  L. Oddershede,et al.  Optical Tweezers Cause Physiological Damage to Escherichia coli and Listeria Bacteria , 2008, Applied and Environmental Microbiology.