Inverse problems, invisibility, and artificial wormholes

We will describe recent theoretical and experimental progress on making objects invisible to electromagnetic waves. Maxwell's equations have transformation laws that allow for design of electromagnetic parameters that would steer light around a hidden region, returning it to its original path on the far side. Not only would observers be unaware of the contents of the hidden region, they would not even be aware that something was hidden. The object would have no shadow. New advances in metamaterials have given some experimental evidence that this indeed can be made possible at certain frequencies.

[1]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[2]  R. Weder A Rigorous Time-Domain Analysis of Full--Wave Electromagnetic Cloaking (Invisibility) , 2007, 0704.0248.

[3]  Matti Lassas,et al.  Anisotropic conductivities that cannot be detected by EIT. , 2003, Physiological measurement.

[4]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[5]  Gunther Uhlmann,et al.  Anisotropic inverse problems in two dimensions , 2003 .

[6]  Juha Kinnunen,et al.  Sobolev Spaces with Zero Boundary Values on Metric Spaces , 2000 .

[7]  Augusto Visintin,et al.  Nucleation and mean curvature flow , 1998 .

[8]  Andrea Alù,et al.  Erratum: Achieving transparency with plasmonic and metamaterial coatings [Phys. Rev. E, 72 , 016623 (2005)] , 2006 .

[9]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  John Sylvester,et al.  An anisotropic inverse boundary value problem , 1990 .

[11]  Matti Lassas,et al.  Electromagnetic Wormholes via Handlebody Constructions , 2007, 0704.0914.

[12]  Rodolfo H. Torres,et al.  Uniqueness in the Inverse Conductivity Problem for Conductivities with 3/2 Derivatives in Lp, p > 2n , 2003 .

[13]  Robert V. Kohn,et al.  IDENTIFICATION OF AN UNKNOWN CONDUCTIVITY BY MEANS OF MEASUREMENTS AT THE BOUNDARY. , 1983 .

[14]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[15]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[16]  Ulf Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[17]  G. Uhlmann,et al.  Full-Wave Invisibility of Active Devices at All Frequencies , 2006, math/0611185.

[18]  Per-Simon Kildal,et al.  Artificially soft and hard surfaces in electromagnetics , 1990 .

[19]  Ismo V. Lindell Generalized soft-and-hard surface , 2002 .

[20]  Matti Lassas,et al.  On nonuniqueness for Calderón’s inverse problem , 2003 .

[21]  A. Katchalov,et al.  Multidimensional inverse problem with incomplete boundary spectral data , 1998 .

[22]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[23]  Ville Kolehmainen,et al.  The Inverse Conductivity Problem with an Imperfectly Known Boundary , 2005, SIAM J. Appl. Math..

[24]  M. Lassas,et al.  Inverse Boundary Spectral Problems , 2001 .

[25]  Matti Lassas,et al.  Maxwell's equations with a polarization independent wave velocity: direct and inverse problems , 2006 .

[26]  Ari Sihvola,et al.  REALIZATION OF GENERALIZED SOFT-AND-HARD BOUNDARY , 2006 .

[27]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[28]  Gunther Uhlmann Chapter 6.1.5 – Scattering by a Metric1 , 2002 .

[29]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[30]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[31]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[32]  G. Uhlmann,et al.  Improvement of cylindrical cloaking with the SHS lining. , 2007, Optics express.

[33]  R. Weder A rigorous analysis of high-order electromagnetic invisibility cloaks , 2007, 0711.0507.

[34]  Matti Lassas,et al.  The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary , 2003 .

[35]  M. I. Belishev,et al.  To the reconstruction of a Riemannian manifold via its spectral data (BC-method) , 1992 .

[36]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[37]  Yaroslav Kurylev Multi-dimensional inverse boundary problems by BC-method: Groups of transformations and uniqueness results , 1993 .

[38]  P. Kildal Definition of artificially soft and hard surfaces for electromagnetic waves , 1988 .

[39]  Gunther Uhlmann Scattering by a Metric 1 , 2002 .

[40]  G. Milton,et al.  On the cloaking effects associated with anomalous localized resonance , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Yaroslav Kurylev,et al.  To the reconstruction of a riemannian manifold via its spectral data , 1992 .

[42]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[43]  G. Uhlmann,et al.  Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. , 2007, Physical review letters.

[44]  Matti Lassas,et al.  On determining a Riemannian manifold from the Dirichlet-to-Neumann map , 2001 .

[45]  Gunther Uhlmann,et al.  Complex geometrical optics solutions for Lipschitz conductivities , 2003 .

[46]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[47]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[48]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[49]  R. Kohn,et al.  Cloaking via change of variables in electric impedance tomography , 2008 .

[50]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  L. B. Slichter An Inverse Boundary Value Problem in Electrodynamics , 1933 .

[52]  Matti Lassas,et al.  The Calderon problem for conormal potentials, I: Global uniqueness and reconstruction , 2001 .