Mean-field games with common noise based on nonlinear diffusion processes

[1]  Vassili N. Kolokoltsov,et al.  Mean-Field-Game Model of Corruption , 2015, Dynamic Games and Applications.

[2]  Saran Ahuja,et al.  Wellposedness of Mean Field Games with Common Noise under a Weak Monotonicity Condition , 2014, SIAM J. Control. Optim..

[3]  Alain Bensoussan,et al.  Mean-Field-Game Model for Botnet Defense in Cyber-Security , 2015, 1511.06642.

[4]  R. Carmona,et al.  A probabilistic weak formulation of mean field games and applications , 2013, 1307.1152.

[5]  D. Lacker A general characterization of the mean field limit for stochastic differential games , 2014, 1408.2708.

[6]  T. Kurtz,et al.  Conditional distributions, exchangeable particle systems, and stochastic partial differential equations , 2014 .

[7]  R. Carmona,et al.  Mean field games with common noise , 2014, 1407.6181.

[8]  Diogo A. Gomes,et al.  Mean Field Games Models—A Brief Survey , 2013, Dynamic Games and Applications.

[9]  A. Bensoussan,et al.  Mean Field Games and Mean Field Type Control Theory , 2013 .

[10]  Pierre-Louis Lions,et al.  Long Time Average of Mean Field Games with a Nonlocal Coupling , 2013, SIAM J. Control. Optim..

[11]  Diogo A. Gomes,et al.  On the existence of classical solutions for stationary extended mean field games , 2013, 1305.2696.

[12]  René Carmona,et al.  Probabilistic Analysis of Mean-field Games , 2013 .

[13]  Peter E. Caines,et al.  Epsilon-Nash Mean Field Game Theory for Nonlinear Stochastic Dynamical Systems with Major and Minor Agents , 2012, SIAM J. Control. Optim..

[14]  V. Kolokoltsov Nonlinear Diffusions and Stable-Like Processes with Coefficients Depending on the Median or VaR , 2012, 1207.5925.

[15]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[16]  Minyi Huang,et al.  Large-Population LQG Games Involving a Major Player: The Nash Certainty Equivalence Principle , 2009, SIAM J. Control. Optim..

[17]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[18]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[19]  Minghui Zhu,et al.  Small Gain Theorem with Restrictions for Uncertain Time-varying Nonlinear Systems , 2006, Commun. Inf. Syst..

[20]  T. Kurtz,et al.  Particle representations for a class of nonlinear SPDEs , 1999 .