Density matrix renormalization group with efficient dynamical electron correlation through range separation.

We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.

[1]  Kieron Burke,et al.  Comparison shopping for a gradient-corrected density functional , 1996 .

[2]  Emmanuel Fromager,et al.  On the exact formulation of multi-configuration density-functional theory: electron density versus orbitals occupation , 2014, 1409.2326.

[3]  Wataru Mizukami,et al.  Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications , 2015 .

[4]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[5]  F. Weigend Accurate Coulomb-fitting basis sets for H to Rn. , 2006, Physical chemistry chemical physics : PCCP.

[6]  Peter Pulay,et al.  UHF natural orbitals for defining and starting MC‐SCF calculations , 1988 .

[7]  Marcel Nooijen,et al.  On the spin and symmetry adaptation of the density matrix renormalization group method. , 2008, The Journal of chemical physics.

[8]  T. Yanai,et al.  High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. , 2009, The Journal of chemical physics.

[9]  Andreas Savin,et al.  Density functionals for the Yukawa electron-electron interaction , 1995 .

[10]  Burke,et al.  Escaping the symmetry dilemma through a pair-density interpretation of spin-density functional theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program , 2005 .

[12]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[13]  M. Reiher,et al.  Decomposition of density matrix renormalization group states into a Slater determinant basis. , 2007, The Journal of chemical physics.

[14]  Richard L. Martin,et al.  Ab initio quantum chemistry using the density matrix renormalization group , 1998 .

[15]  Markus Reiher,et al.  New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. , 2014, Journal of chemical theory and computation.

[16]  Rebecca K. Carlson,et al.  Multiconfiguration Pair-Density Functional Theory. , 2014, Journal of chemical theory and computation.

[17]  J. Sólyom,et al.  Applications of Quantum Information in the Density-Matrix Renormalization Group , 2008 .

[18]  G. Chan,et al.  Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II. , 2013, Nature chemistry.

[19]  A. Saxena,et al.  Linear and nonlinear optical response of polyenes: A density matrix renormalization group study , 1998 .

[20]  Emmanuel Fromager,et al.  Self-consistent many-body perturbation theory in range-separated density-functional theory : A one-electron reduced-density-matrix-based formulation , 2008 .

[21]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[22]  Markus Reiher,et al.  New electron correlation theories for transition metal chemistry. , 2011, Physical chemistry chemical physics : PCCP.

[23]  Emmanuel Fromager,et al.  Metallophilic interactions in A-frame molecules [S(MPH3)2] (M = Cu, Ag, Au) from range-separated density-functional perturbation theory , 2012 .

[24]  J. Ángyán,et al.  Hybrid functional with separated range , 2005 .

[25]  I. Shavitt Multi-state Multireference Rayleigh–Schrödinger Perturbation Theory for Mixed Electronic States: Second and Third Order , 2002 .

[26]  G. Fano,et al.  The density matrix renormalization group method. Application to the PPP model of a cyclic polyene chain. , 1998, cond-mat/9803071.

[27]  Jeppe Olsen,et al.  Second‐order Mo/ller–Plesset perturbation theory as a configuration and orbital generator in multiconfiguration self‐consistent field calculations , 1988 .

[28]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[29]  Debashree Ghosh,et al.  An Introduction to the Density Matrix Renormalization Group Ansatz in Quantum Chemistry , 2007, 0711.1398.

[30]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[31]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[32]  Jürgen Gauss,et al.  State-of-the-art density matrix renormalization group and coupled cluster theory studies of the nitrogen binding curve. , 2004, The Journal of chemical physics.

[33]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[34]  J. K. Pedersen,et al.  Description of correlation and relativistic effects in calculations of molecular properties , 2004 .

[35]  Paul W. Ayers,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2013, The European Physical Journal D.

[36]  Valera Veryazov,et al.  How to Select Active Space for Multiconfigurational Quantum Chemistry , 2011 .

[37]  Stefan Knecht,et al.  Multi-configuration time-dependent density-functional theory based on range separation. , 2012, The Journal of chemical physics.

[38]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[39]  M. Reiher,et al.  Entanglement Measures for Single- and Multireference Correlation Effects. , 2012, The journal of physical chemistry letters.

[40]  A. Savin,et al.  On degeneracy, near-degeneracy and density functional theory , 1996 .

[41]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[42]  Takeshi Yanai,et al.  Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function. , 2013, The Journal of chemical physics.

[43]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[44]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[45]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[46]  Julien Toulouse,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. , 2007, The Journal of chemical physics.

[47]  Garnet Kin-Lic Chan,et al.  Communication: A flexible multi-reference perturbation theory by minimizing the Hylleraas functional with matrix product states. , 2014, The Journal of chemical physics.

[48]  Guido Fano,et al.  Quantum chemistry using the density matrix renormalization group , 2001 .

[49]  Jacob Kongsted,et al.  The multi-configuration self-consistent field method within a polarizable embedded framework. , 2013, The Journal of chemical physics.

[50]  M. Reiher,et al.  Systematic dependence of transition‐metal coordination energies on density‐functional parametrizations , 2015 .

[51]  Klaus Ruedenberg,et al.  Electronic rearrangements during chemical reactions. II. Planar dissociation of ethylene , 1979 .

[52]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[53]  Dimitri Van Neck,et al.  The density matrix renormalization group for ab initio quantum chemistry , 2014, The European Physical Journal D.

[54]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical chemistry chemical physics : PCCP.

[55]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[56]  Garnet Kin-Lic Chan,et al.  Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm. , 2013, The Journal of chemical physics.

[57]  A. Mitrushchenkov,et al.  On the importance of orbital localization in QC-DMRG calculations , 2012 .

[58]  David Yaron,et al.  COMPARISON OF DENSITY MATRIX RENORMALIZATION GROUP CALCULATIONS WITH ELECTRON-HOLE MODELS OF EXCITON BINDING IN CONJUGATED POLYMERS , 1998 .

[59]  Walter Thiel,et al.  Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction. , 2008, The Journal of chemical physics.

[60]  Marcel Nooijen,et al.  Obtaining the two-body density matrix in the density matrix renormalization group method. , 2008, The Journal of chemical physics.

[61]  Katharina Boguslawski,et al.  Orbital entanglement in quantum chemistry , 2014, 1409.8017.

[62]  Markus Reiher,et al.  Communication: four-component density matrix renormalization group. , 2013, The Journal of chemical physics.

[63]  Takeshi Yanai,et al.  Complete active space second-order perturbation theory with cumulant approximation for extended active-space wavefunction from density matrix renormalization group. , 2014, The Journal of chemical physics.

[64]  C. Daul,et al.  Full‐CI quantum chemistry using the density matrix renormalization group , 1999 .

[65]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[66]  Sebastian Wouters,et al.  Longitudinal static optical properties of hydrogen chains: finite field extrapolations of matrix product state calculations. , 2012, The Journal of chemical physics.

[67]  K. Pernal Excitation energies from range-separated time-dependent density and density matrix functional theory. , 2012, The Journal of chemical physics.

[68]  J. Seminario A study of small systems containing H and O atoms using nonlocal functionals: comparisons with ab initio and experiment , 1994 .

[69]  Rodney J. Bartlett,et al.  Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions , 1996 .

[70]  Markus Reiher,et al.  The Density Matrix Renormalization Group Algorithm in Quantum Chemistry , 2010 .

[71]  Stefan Knecht,et al.  Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions. , 2013, The Journal of chemical physics.

[72]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[73]  Garnet Kin-Lic Chan,et al.  Spin-adapted density matrix renormalization group algorithms for quantum chemistry. , 2012, The Journal of chemical physics.

[74]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[75]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[76]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[77]  Yuki Kurashige,et al.  Multireference electron correlation methods with density matrix renormalisation group reference functions , 2014 .

[78]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[79]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[80]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[81]  M. Reiher,et al.  Determining factors for the accuracy of DMRG in chemistry. , 2014, Chimia.

[82]  Jeppe Olsen,et al.  The CASSCF method: A perspective and commentary , 2011 .

[83]  S. Kais,et al.  Entanglement as measure of electron–electron correlation in quantum chemistry calculations , 2005, quant-ph/0507148.

[84]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[85]  C. Marian,et al.  Performance of the Density Functional Theory/Multireference Configuration Interaction Method on Electronic Excitation of Extended π-Systems. , 2008, Journal of chemical theory and computation.

[86]  Renzo Cimiraglia,et al.  Merging multireference perturbation and density-functional theories by means of range separation: Potential curves for Be 2 , Mg 2 , and Ca 2 , 2010 .

[87]  Markus Reiher,et al.  Self-consistent embedding of density-matrix renormalization group wavefunctions in a density functional environment. , 2014, The Journal of chemical physics.

[88]  M. Reiher,et al.  Spin in density‐functional theory , 2012, 1206.2234.

[89]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .