A geological metaphor for geospatial-temporal data analysis

To provide visual access to geospatial-temporal data, existing systems usually highlight the data's spatial, temporal and topical distribution individually in separated, but linked views. Because this design often complicates queries that concern multiple data aspects and also involves more user interaction, in this paper, we present a geological metaphor that aims to combine relations between orthogonal data aspects. We describe how our adopted landscape metaphor intuitively depicts global and local relationships based on its surface, glyph augmentation and inner sediment structure. We validate the geological metaphor with case studies, compare it with existing systems and describe how it can be integrated into those as an alternative map view.

[1]  Ryan Hafen,et al.  A Visual Analytics Approach to Understanding Spatiotemporal Hotspots , 2010, IEEE Transactions on Visualization and Computer Graphics.

[2]  J.C. Roberts,et al.  State of the Art: Coordinated & Multiple Views in Exploratory Visualization , 2007, Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007).

[3]  M. Sheelagh T. Carpendale,et al.  VisGets: Coordinated Visualizations for Web-based Information Exploration and Discovery , 2008, IEEE Transactions on Visualization and Computer Graphics.

[4]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[5]  Robert Harper,et al.  Stories in GeoTime , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[6]  Bruce H. Thomas,et al.  GraphScape: integrated multivariate network visualization , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[7]  Terry A. Slocum Thematic Cartography and Visualization , 1998 .

[8]  Jeffrey S. Torguson,et al.  Cartography: Thematic Map Design , 1990 .

[9]  Gerik Scheuermann,et al.  GeoTemCo: Comparative Visualization of Geospatial-Temporal Data with Clutter Removal Based on Dynamic Delaunay Triangulations , 2012, VISIGRAPP.

[10]  Heidrun Schumann,et al.  Stacking-Based Visualization of Trajectory Attribute Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[11]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[12]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[13]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[14]  Peter F. Fisher,et al.  Classics from IJGIS : twenty years of the International journal of geographical information science and systems , 2006 .

[15]  Heidrun Schumann,et al.  3D information visualization for time dependent data on maps , 2005, Ninth International Conference on Information Visualisation (IV'05).

[16]  William Wright,et al.  Geo time information visualization , 2005 .

[17]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[18]  GENNADY L. ANDRIENKO Visual Data Exploration : Tools , Principles , Problems , 2005 .

[19]  David M. Mark,et al.  The natural landscape metaphor in information visualization: The role of commonsense geomorphology , 2010, J. Assoc. Inf. Sci. Technol..

[20]  R. Roth,et al.  A user-centered approach for designing and developing spatiotemporal crime analysis tools , 2010 .

[21]  David S. Ebert,et al.  Bristle Maps: A Multivariate Abstraction Technique for Geovisualization , 2013, IEEE Transactions on Visualization and Computer Graphics.