A subset of bacterial inner membrane proteins integrated by the twin‐arginine translocase

A group of bacterial exported proteins are synthesized with N‐terminal signal peptides containing a SRRxFLK ‘twin‐arginine’ amino acid motif. Proteins bearing twin‐arginine signal peptides are targeted post‐translationally to the twin‐arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are assembled by a co‐translational process directed by SRP/FtsY, the SecYEG translocase, and YidC. In this work we define a novel class of integral membrane proteins assembled by a Tat‐dependent mechanism. We show that at least five E. coli Tat substrate proteins contain hydrophobic C‐terminal transmembrane helices (or ‘C‐tails’). Fusions between the identified transmembrane C‐tails and the exclusively Tat‐dependent reporter proteins TorA and SufI render the resultant chimeras membrane‐bound. Export‐linked signal peptide processing and membrane integration of the chimeras is shown to be both Tat‐dependent and YidC‐independent. It is proposed that the mechanism of membrane integration of proteins by the Tat system is fundamentally distinct from that employed for other bacterial inner membrane proteins.

[1]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[2]  K. Donald Respiration , 1962 .

[3]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[4]  F. Studier Bacteriophage T7. , 1972, Science.

[5]  H. Towbin,et al.  Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[7]  C. Richardson,et al.  A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. M. Pratt,et al.  An 18 amino acid amphiphilic helix forms the membrane‐anchoring domain of the Escherichia coli penicillin‐binding protein 5 , 1987, Molecular microbiology.

[9]  R. Simons,et al.  Improved single and multicopy lac-based cloning vectors for protein and operon fusions. , 1987, Gene.

[10]  G. Giordano,et al.  The inducible trimethylamine-N-oxide reductase of Escherichia coli K12: biochemical and immunological studies. , 1988, Biochimica et biophysica acta.

[11]  B. Washburn,et al.  New method for generating deletions and gene replacements in Escherichia coli , 1989, Journal of bacteriology.

[12]  J. Weiner,et al.  Organization of dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli , 1990, Journal of bacteriology.

[13]  J. Weiner,et al.  Dimethyl sulfoxide reductase of Escherichia coli: an investigation of function and assembly by use of in vivo complementation , 1991, Journal of bacteriology.

[14]  J. Heider,et al.  Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. , 1991, The Journal of biological chemistry.

[15]  G. Heijne Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[16]  G von Heijne,et al.  Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. , 1992, Journal of molecular biology.

[17]  M. Mandrand,et al.  Microbial hydrogenases: primary structure, classification, signatures and phylogeny. , 1993, FEMS microbiology reviews.

[18]  D. Richardson,et al.  Sequence analysis of subunits of the membrane‐bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron‐carrying arm of a redox loop , 1995, Molecular microbiology.

[19]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[20]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[21]  A. Hochkoeppler,et al.  Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. , 1997, European journal of biochemistry.

[22]  M. Mandrand-Berthelot,et al.  Topological Analysis of the Aerobic Membrane-Bound Formate Dehydrogenase of Escherichia coli , 1998, Journal of bacteriology.

[23]  J. Weiner,et al.  A Novel and Ubiquitous System for Membrane Targeting and Secretion of Cofactor-Containing Proteins , 1998, Cell.

[24]  B. Berks,et al.  Overlapping functions of components of a bacterial Sec‐independent protein export pathway , 1998, The EMBO journal.

[25]  B. Berks,et al.  An Essential Component of a Novel Bacterial Protein Export System with Homologues in Plastids and Mitochondria* , 1998, The Journal of Biological Chemistry.

[26]  J. Beckwith,et al.  The Protein Translocation Apparatus Contributes to Determining the Topology of an Integral Membrane Protein in Escherichia coli * , 1998, The Journal of Biological Chemistry.

[27]  G. Giordano,et al.  A novel Sec‐independent periplasmic protein translocation pathway in Escherichia coli , 1998, The EMBO journal.

[28]  G. Giordano,et al.  Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution. , 1998, Journal of molecular biology.

[29]  D. Boxer,et al.  Reassignment of the gene encoding the Escherichia coli hydrogenase 2 small subunit--identification of a soluble precursor of the small subunit in a hypB mutant. , 1998, European journal of biochemistry.

[30]  A. Kröger,et al.  Two membrane anchors of Wolinella succinogenes hydrogenase and their function in fumarate and polysulfide respiration , 1998, Archives of Microbiology.

[31]  B. Berks,et al.  Sec-independent Protein Translocation in Escherichia coli , 1999, The Journal of Biological Chemistry.

[32]  Matthias Müller,et al.  Co-translocation of a Periplasmic Enzyme Complex by a Hitchhiker Mechanism through the Bacterial Tat Pathway* , 1999, The Journal of Biological Chemistry.

[33]  R. Gross,et al.  The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from Wolinella succinogenes , 1999, Archives of Microbiology.

[34]  Martin Wiedmann,et al.  YidC mediates membrane protein insertion in bacteria , 2000, Nature.

[35]  G. von Heijne,et al.  YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase , 2000, The EMBO journal.

[36]  P. Magnani,et al.  Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites. , 2000, Biochimica et biophysica acta.

[37]  B. Berks,et al.  The Twin Arginine Consensus Motif of Tat Signal Peptides Is Involved in Sec-independent Protein Targeting in Escherichia coli * , 2000, The Journal of Biological Chemistry.

[38]  K. Cline,et al.  The Thylakoid ΔpH-dependent Pathway Machinery Facilitates RR-independent N-Tail Protein Integration* , 2000, The Journal of Biological Chemistry.

[39]  H. Saibil,et al.  Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. , 2001, European journal of biochemistry.

[40]  W. Wickner,et al.  Functional reconstitution of bacterial Tat translocation in vitro , 2001, The EMBO journal.

[41]  T. Samuelsson,et al.  YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly , 2001, FEBS letters.

[42]  R. Herrmann,et al.  The Rieske Fe/S protein of the cytochrome b6/f complex in chloroplasts: missing link in the evolution of protein transport pathways in chloroplasts? , 2001, The Journal of biological chemistry.

[43]  B. Berks,et al.  Escherichia coli Strains Blocked in Tat-Dependent Protein Export Exhibit Pleiotropic Defects in the Cell Envelope , 2001, Journal of bacteriology.

[44]  A. Bolhuis,et al.  TatB and TatC Form a Functional and Structural Unit of the Twin-arginine Translocase from Escherichia coli * , 2001, The Journal of Biological Chemistry.

[45]  J. de Gier,et al.  Biogenesis of inner membrane proteins in Escherichia coli , 2001, Molecular microbiology.

[46]  Frank Sargent,et al.  A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif , 2001, Archives of Microbiology.

[47]  B. Berks,et al.  Functional complexity of the twin‐arginine translocase TatC component revealed by site‐directed mutagenesis , 2002, Molecular microbiology.

[48]  G. Tollin,et al.  Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Matthias Müller,et al.  Separate Analysis of Twin-arginine Translocation (Tat)-specific Membrane Binding and Translocation in Escherichia coli * , 2002, The Journal of Biological Chemistry.

[50]  T. Palmer,et al.  How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli , 2002 .

[51]  A. Driessen,et al.  SecDFyajC forms a heterotetrameric complex with YidC , 2002, Molecular microbiology.

[52]  C. Santini,et al.  Topology determination and functional analysis of the Escherichia coli TatC protein , 2002, FEBS letters.

[53]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[54]  Frank Sargent,et al.  Behaviour of topological marker proteins targeted to the Tat protein transport pathway , 2002, Molecular microbiology.

[55]  B. Berks,et al.  Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. , 2002, Journal of molecular biology.

[56]  R. Dalbey,et al.  YidC, a Newly Defined Evolutionarily Conserved Protein, Mediates Membrane Protein Assembly in Bacteria , 2002, Biological chemistry.

[57]  Johan Nilsson,et al.  Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  B. Berks,et al.  Assembly of membrane-bound respiratory complexes by the Tat protein-transport system , 2002, Archives of Microbiology.

[59]  B. Wallace,et al.  Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system. , 2002, Biochemistry.

[60]  Romé Voulhoux,et al.  In vivo dissection of the Tat translocation pathway in Escherichia coli. , 2002, Journal of molecular biology.

[61]  Jon Beckwith,et al.  The topological analysis of integral cytoplasmic membrane proteins , 1993, The Journal of Membrane Biology.