High‐Performance All‐Polymer Solar Cells Via Side‐Chain Engineering of the Polymer Acceptor: The Importance of the Polymer Packing Structure and the Nanoscale Blend Morphology

The effectiveness of side-chain engineering is demonstrated to produce highly efficient all-polymer solar cells (efficiency of 5.96%) using a series of naphthalene diimide-based polymer acceptors with controlled side chains. The dramatic changes in the polymer packing, blend morphology, and electron mobility of all-polymer solar cells elucidate clear trends in the photovoltaic performances.

[1]  Bumjoon J. Kim,et al.  Determining Optimal Crystallinity of Diketopyrrolopyrrole-Based Terpolymers for Highly Efficient Polymer Solar Cells and Transistors , 2014 .

[2]  P. Liu,et al.  High‐Efficiency All‐Polymer Solar Cells Based on a Pair of Crystalline Low‐Bandgap Polymers , 2014, Advanced materials.

[3]  Timothy M. Burke,et al.  Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases. , 2014, Journal of the American Chemical Society.

[4]  Bumjoon J. Kim,et al.  High-Performance All-Polymer Solar Cells Based on Face-On Stacked Polymer Blends with Low Interfacial Tension. , 2014, ACS macro letters.

[5]  S. Jenekhe,et al.  All‐Polymer Bulk Heterojuction Solar Cells with 4.8% Efficiency Achieved by Solution Processing from a Co‐Solvent , 2014, Advanced materials.

[6]  Zhihua Chen,et al.  Tuning the morphology of all-polymer OPVS through altering polymer-solvent interactions , 2014 .

[7]  S. Jenekhe,et al.  Side chain engineering of n-type conjugated polymer enhances photocurrent and efficiency of all-polymer solar cells. , 2014, Chemical communications.

[8]  Jin Young Kim,et al.  Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device , 2014 .

[9]  Daisuke Mori,et al.  Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7% , 2014 .

[10]  H. Yao,et al.  Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure , 2014 .

[11]  J. Behrends,et al.  Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in All‐Polymer Solar Cells , 2014 .

[12]  A. Amassian,et al.  Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics. , 2014, Journal of the American Chemical Society.

[13]  Yongfang Li,et al.  Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution , 2014 .

[14]  Alberto Salleo,et al.  High Performance All‐Polymer Solar Cell via Polymer Side‐Chain Engineering , 2014, Advanced materials.

[15]  Luping Yu,et al.  Synthesis and Search for Design Principles of New Electron Accepting Polymers for All-Polymer Solar Cells , 2014 .

[16]  Weiwei Li,et al.  Polymer Solar Cells with Diketopyrrolopyrrole Conjugated Polymers as the Electron Donor and Electron Acceptor , 2014, Advanced materials.

[17]  Xinge Yu,et al.  Alkoxy‐Functionalized Thienyl‐Vinylene Polymers for Field‐Effect Transistors and All‐Polymer Solar Cells , 2014 .

[18]  Long Ye,et al.  Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45% , 2014 .

[19]  B. Collins,et al.  The role of regioregularity, crystallinity, and chain orientation on electron transport in a high-mobility n-type copolymer. , 2014, Journal of the American Chemical Society.

[20]  Mm Martijn Wienk,et al.  Effect of the Fibrillar Microstructure on the Efficiency of High Molecular Weight Diketopyrrolopyrrole‐Based Polymer Solar Cells , 2014, Advanced materials.

[21]  Shinuk Cho,et al.  Semicrystalline D−A Copolymers with Different Chain Curvature for Applications in Polymer Optoelectronic Devices , 2014 .

[22]  Daisuke Mori,et al.  Low‐Bandgap Donor/Acceptor Polymer Blend Solar Cells with Efficiency Exceeding 4% , 2014 .

[23]  Yongfang Li,et al.  [6,6]‐Phenyl‐C61‐Butyric Acid Dimethylamino Ester as a Cathode Buffer Layer for High‐Performance Polymer Solar Cells , 2013 .

[24]  Kazuhito Hashimoto,et al.  Control of Miscibility and Aggregation Via the Material Design and Coating Process for High‐Performance Polymer Blend Solar Cells , 2013, Advanced materials.

[25]  Samson A Jenekhe,et al.  All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. , 2013, Journal of the American Chemical Society.

[26]  Yu-Shan Cheng,et al.  Fullerene Derivative‐Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low‐Bandgap Polymer (PTB7‐Th) for High Performance , 2013, Advanced materials.

[27]  Sonya A. Mollinger,et al.  Photocurrent enhancement from diketopyrrolopyrrole polymer solar cells through alkyl-chain branching point manipulation. , 2013, Journal of the American Chemical Society.

[28]  Jizheng Wang,et al.  Fill factor in organic solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[29]  Weiwei Li,et al.  Efficient tandem and triple-junction polymer solar cells. , 2013, Journal of the American Chemical Society.

[30]  Antonio Facchetti,et al.  Polymer donor–polymer acceptor (all-polymer) solar cells , 2013 .

[31]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[32]  John R. Tumbleston,et al.  The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells , 2013 .

[33]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[34]  John R. Tumbleston,et al.  Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71BM Solar Cells , 2013 .

[35]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[36]  Bumjoon J. Kim,et al.  The effect of side-chain length on regioregular poly[3-(4-n-alkyl)phenylthiophene]/PCBM and ICBA polymer solar cells , 2012 .

[37]  Bumjoon J. Kim,et al.  Effects of Solubilizing Group Modification in Fullerene Bis-Adducts on Normal and Inverted Type Polymer Solar Cells , 2012 .

[38]  B. Thompson,et al.  Influence of the Ethylhexyl Side-Chain Content on the Open-Circuit Voltage in rr-Poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) Copolymers , 2012 .

[39]  A. Hexemer,et al.  Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. , 2012, The Review of scientific instruments.

[40]  S. Jenekhe,et al.  Naphthalene Diimide-Based Polymer Semiconductors: Synthesis, Structure–Property Correlations, and n-Channel and Ambipolar Field-Effect Transistors , 2012 .

[41]  Alberto Salleo,et al.  Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. , 2012, Journal of the American Chemical Society.

[42]  Christopher R. McNeill,et al.  Morphology of all-polymer solar cells , 2012 .

[43]  B. Collins,et al.  Correlating the efficiency and nanomorphology of polymer blend solar cells utilizing resonant soft X-ray scattering. , 2012, ACS nano.

[44]  M. Toney,et al.  Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. , 2012, Journal of the American Chemical Society.

[45]  J. Lüning,et al.  Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering. , 2010, Nano letters.

[46]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.

[47]  C. McNeill,et al.  Influence of Alkyl Side-Chain Length on the Performance of Poly(3-alkylthiophene)/Polyfluorene All-Polymer Solar Cells , 2010 .

[48]  S. Jenekhe,et al.  Enhanced Performance of Bulk Heterojunction Solar Cells Using Block Copoly(3-alkylthiophene)s , 2010 .

[49]  Claire H. Woo,et al.  All-polymer photovoltaic devices of poly(3-(4-n-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) polymerization. , 2009, Journal of the American Chemical Society.

[50]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[51]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[52]  Jin Young Kim,et al.  Processing additives for improved efficiency from bulk heterojunction solar cells. , 2008, Journal of the American Chemical Society.

[53]  Bumjoon J. Kim,et al.  Influence of Alkyl Substitution Pattern in Thiophene Copolymers on Composite Fullerene Solar Cell Performance , 2007 .

[54]  Richard H. Friend,et al.  Electron Trapping in Dye/Polymer Blend Photovoltaic Cells , 2000 .