An Introduction to the Theory of Hv-Semilattices

In this paper, we introduce the concept of Hv-semilattice and obtain some characterizations of it. We give the definitions of ideal and of hyperorder on an Hv-semilattice. We also study some of their related properties.

[1]  P. Corsini,et al.  Applications of Hyperstructure Theory , 2010 .

[2]  Šárka Hošková,et al.  Discrete transformation hypergroups and transformation hypergroups with phase tolerance space , 2008, Discret. Math..

[3]  Bijan Davvaz,et al.  Commutative Rings Obtained from Hyperrings (H v -rings) with α*-Relations , 2007 .

[4]  Bijan Davvaz,et al.  A New view of the approximations in Hv-groups , 2006, Soft Comput..

[5]  A. Madanshekaf H v -structures associated with PQ-hyperoperations , 2003 .

[6]  Š. Hošková,et al.  Abelizations of weakly associative hyperstructures based on their direct squares , 2003 .

[7]  B. Davvaz,et al.  Weak Equality and Exact Sequences in Hv-modules , 2002 .

[8]  S. Spartalis On HV-SEMIGROUPS , 2002 .

[9]  Ali Reza Ashrafi,et al.  About some join spaces and hyperlattices , 2001 .

[10]  A. Barghi,et al.  The prime ideal theorem for distributive hyperlattices , 2001 .

[11]  Joongsoo Park,et al.  On algorithms to compute someH V-groups , 2000 .

[12]  Thomas Vougiouklis,et al.  On H v -rings and H v -representations , 1999 .

[13]  B. Davvaz,et al.  Lower and Upper Approximations in Hv- groups , 1999 .

[14]  B. Davvaz REMARKS ON WEAK HYPERMODULES , 1999 .

[15]  Thomas Vougiouklis,et al.  Convolutions on WASS hyperstructures , 1997, Discret. Math..

[16]  Stephanos Spartalis,et al.  On the number of Hv-rings with P-hyperoperations , 1996, Discret. Math..

[17]  Thomas Vougiouklis,et al.  Hv-groups defined on the same set , 1996, Discret. Math..

[18]  M. Konstantinidou OnP-hyperlattices and their distributivity , 1993 .