Convergence and Rates of Convergence of Recursive Radial Basis Functions Networks in Function Learning and Classification

In this paper we consider convergence and rates of convergence of the normalized recursive radial basis function networks in function learning and classification when network parameters are learned by the empirical risk minimization.

[1]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[2]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[3]  Adam Krzyzak,et al.  Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation , 1992, IEEE Trans. Inf. Theory.

[4]  Adam Krzyzak,et al.  Radial Basis Function Networks and Complexity Regularization in Function Learning , 2022 .

[5]  Miroslaw Pawlak,et al.  Necessary and sufficient conditions for Bayes risk consistency of a recursive kernel classification rule , 1987, IEEE Trans. Inf. Theory.

[6]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[7]  G. Lugosi,et al.  On the Strong Universal Consistency of Nearest Neighbor Regression Function Estimates , 1994 .

[8]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[9]  Adam Krzyzak,et al.  The rates of convergence of kernel regression estimates and classification rules , 1986, IEEE Trans. Inf. Theory.

[10]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[11]  L. Devroye,et al.  An equivalence theorem for L1 convergence of the kernel regression estimate , 1989 .

[12]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[13]  A. Krzyżak,et al.  Convergence and rates of convergence of radial basis functions networks in function learning , 2001 .

[14]  J. Duchon Sur l’erreur d’interpolation des fonctions de plusieurs variables par les $D^m$-splines , 1978 .

[15]  Jean-Philippe Vert,et al.  Consistency of Random Forests , 2014, 1405.2881.

[16]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[17]  L. Devroye,et al.  On the L1 convergence of kernel estimators of regression functions with applications in discrimination , 1980 .

[18]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[19]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[20]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[21]  W. Greblicki,et al.  Fourier and Hermite series estimates of regression functions , 1985 .

[22]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[23]  András Faragó,et al.  Strong universal consistency of neural network classifiers , 1993, IEEE Trans. Inf. Theory.

[24]  Kurt Hornik,et al.  FEED FORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS , 1989 .

[25]  Jooyoung Park,et al.  Approximation and Radial-Basis-Function Networks , 1993, Neural Computation.

[26]  Adam Krzyzak,et al.  Nonparametric regression estimation by normalized radial basis function networks , 2003, IEEE Transactions on Information Theory.

[27]  Gábor Lugosi,et al.  Nonparametric estimation via empirical risk minimization , 1995, IEEE Trans. Inf. Theory.

[28]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[29]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[30]  Adam Krzyżak,et al.  Nonparametric Regression Based on Hierarchical Interaction Models , 2017, IEEE Transactions on Information Theory.

[31]  L. Györfi,et al.  On the asymptotic normality of the L2-error in partitioning regression estimation , 1998 .

[32]  Adam Krzyzak,et al.  Nonparametric estimation and classification using radial basis function nets and empirical risk minimization , 1996, IEEE Trans. Neural Networks.

[33]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[34]  Robert Shorten,et al.  Side effects of Normalising Radial Basis Function Networks , 1996, Int. J. Neural Syst..

[35]  Adam Krzyzak,et al.  On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size , 1994, Neural Networks.

[36]  Adam Krzyzak,et al.  Distribution-free consistency of a nonparametric kernel regression estimate and classification , 1984, IEEE Trans. Inf. Theory.

[37]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[38]  Luc Devroye,et al.  Any Discrimination Rule Can Have an Arbitrarily Bad Probability of Error for Finite Sample Size , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[40]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[41]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[42]  中澤 真,et al.  Devroye, L., Gyorfi, L. and Lugosi, G. : A Probabilistic Theory of Pattern Recognition, Springer (1996). , 1997 .

[43]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .