Accurate dipole polarizabilities for water clusters n=2-12 at the coupled-cluster level of theory and benchmarking of various density functionals.

The static dipole polarizabilities of water clusters (2<or=N<or=12) are determined at the coupled-cluster level of theory (CCSD). For the dipole polarizability of the water monomer it was determined that the role of the basis set is more important than that of electron correlation and that the basis set augmentation converges with two sets of diffuse functions. The CCSD results are used to benchmark a variety of density functionals while the performance of several families of basis sets (Dunning, Pople, and Sadlej) in producing accurate values for the polarizabilities was also examined. The Sadlej family of basis sets was found to produce accurate results when compared to the ones obtained with the much larger Dunning basis sets. It was furthermore determined that the PBE0 density functional with the aug-cc-pVDZ basis set produces overall remarkably accurate polarizabilities at a moderate computational cost.

[1]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[2]  Benoît Champagne,et al.  Density functional theory investigation of the polarizability and second hyperpolarizability of polydiacetylene and polybutatriene chains: treatment of exact exchange and role of correlation. , 2006, The Journal of chemical physics.

[3]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[4]  John M Herbert,et al.  Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. , 2008, The Journal of chemical physics.

[5]  Jiahao Chen,et al.  QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics , 2007, 0807.2068.

[6]  Richard J. Saykally,et al.  THE BIFURCATION REARRANGEMENT IN CYCLIC WATER CLUSTERS : BREAKING AND MAKING HYDROGEN BONDS , 1998 .

[7]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[8]  S. Bulusu,et al.  Lowest-energy structures of water clusters (H2O)11 and (H2O)13. , 2006, The journal of physical chemistry. A.

[9]  J. Autschbach,et al.  Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory. , 2007, The Journal of chemical physics.

[10]  A. Cohen,et al.  MOLECULAR ELECTRIC PROPERTIES : AN ASSESSMENT OF RECENTLY DEVELOPED FUNCTIONALS , 1999 .

[11]  D. Clary,et al.  Characterization of a cage form of the water hexamer , 1996, Nature.

[12]  G. Maroulis Hyperpolarizability of H2O , 1991 .

[13]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[14]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[15]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[16]  Nauta,et al.  Formation of cyclic water hexamer in liquid helium: the smallest piece of Ice , 2000, Science.

[17]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. II. Analysis of many‐body interactions , 1994 .

[18]  J. Autschbach,et al.  Calculation of origin-independent optical rotation tensor components in approximate time-dependent density functional theory. , 2006, The Journal of chemical physics.

[19]  George Maroulis,et al.  Hyperpolarizability of H2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects , 1998 .

[20]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[21]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[22]  J. B. Paul,et al.  Infrared Cavity Ringdown Spectroscopy of the Water Cluster Bending Vibrations , 1999 .

[23]  D. M. Bishop,et al.  Vibrational Contributions to Molecular Dipole Polarizabilities , 1982 .

[24]  V. Barone,et al.  Accurate static polarizabilities by density functional theory: assessment of the PBE0 model , 1999 .

[25]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[26]  Mihály Kállay,et al.  Calculation of frequency-dependent polarizabilities using general coupled-cluster models , 2006 .

[27]  Kimihiko Hirao,et al.  Polarizability and second hyperpolarizability evaluation of long molecules by the density functional theory with long-range correction. , 2007, The Journal of chemical physics.

[28]  Fred A. Hamprecht,et al.  Development and assessment of new exchange-correlation functionals , 1998 .

[29]  Sotiris S. Xantheas,et al.  Development of transferable interaction models for water. III. Reparametrization of an all-atom polarizable rigid model (TTM2–R) from first principles , 2002 .

[30]  S. Xantheas,et al.  The binding energies of the D2d and S4 water octamer isomers: high-level electronic structure and empirical potential results. , 2004, Journal of Chemical Physics.

[31]  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties: III. Alkali (Li, Na, K, Rb) and alkaline-earth (Be, Mg, Ca, Sr) atoms , 1991 .

[32]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[33]  P. Jørgensen,et al.  Calculation of frequency-dependent polarizabilities using the approximate coupled-cluster triples model CC3 , 2003 .

[34]  Joost VandeVondele,et al.  Ab initio molecular dynamics using hybrid density functionals. , 2008, The Journal of chemical physics.

[35]  H. Ågren,et al.  A comparison of density-functional-theory and coupled-cluster frequency-dependent polarizabilities and hyperpolarizabilities , 2005 .

[36]  D. Mukherjee,et al.  Coupled-Cluster Based Linear Response Approach to Property Calculations: Dynamic Polarizability and Its Static Limit , 1995 .

[37]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[38]  P. Senet,et al.  A Hirshfeld partitioning of polarizabilities of water clusters. , 2006, The Journal of chemical physics.

[39]  W. Meyer,et al.  Ab initio dynamic multipole polarizabilities and hyperpolarizabilities of H2O and the long-range interaction coefficients for its dimer , 1998 .

[40]  J. Autschbach,et al.  Calculation of optical rotation with time-periodic magnetic-field-dependent basis functions in approximate time-dependent density-functional theory. , 2005, The Journal of chemical physics.

[41]  D. C. Clary,et al.  The Water Dipole Moment in Water Clusters , 1997, Science.

[42]  Karol Kowalski,et al.  Coupled cluster calculations for static and dynamic polarizabilities of C60. , 2008, The Journal of chemical physics.

[43]  Qin Wu,et al.  Accurate polymer polarizabilities with exact exchange density-functional theory , 2003 .

[44]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[45]  G. Maroulis Static hyperpolarizability of the water dimer and the interaction hyperpolarizability of two water molecules , 2000 .

[46]  Sotiris S. Xantheas,et al.  Development of transferable interaction models for water. IV. A flexible, all-atom polarizable potential (TTM2-F) based on geometry dependent charges derived from an ab initio monomer dipole moment surface , 2002 .

[47]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[48]  Sotiris S. Xantheas,et al.  AB INITIO STUDIES OF CYCLIC WATER CLUSTERS (H2O)N, N=1-6. III: COMPARISON OF DENSITY FUNCTIONAL WITH MP2 RESULTS , 1995 .

[49]  Malcolm J. Stott,et al.  Linear-response theory within the density-functional formalism: Application to atomic polarizabilities , 1980 .

[50]  R. Saykally,et al.  Vibration-Rotation Tunneling Spectra of the Water Pentamer: Structure and Dynamics , 1996, Science.

[51]  Akihiro Morita Water polarizability in condensed phase: Ab initio evaluation by cluster approach , 2002, J. Comput. Chem..

[52]  J. Hammond,et al.  Coupled-cluster dynamic polarizabilities including triple excitations. , 2008, The Journal of chemical physics.

[53]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[54]  J. Hammond,et al.  Dynamic polarizabilities of polyaromatic hydrocarbons using coupled-cluster linear response theory. , 2007, The Journal of chemical physics.

[55]  Kari Laasonen,et al.  ‘‘Ab initio’’ liquid water , 1993 .

[56]  Michael J. Frisch,et al.  The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets , 1992 .

[57]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[58]  Alexander D. MacKerell,et al.  A simple polarizable model of water based on classical Drude oscillators , 2003 .

[59]  J. G. Snijders,et al.  Improved density functional theory results for frequency‐dependent polarizabilities, by the use of an exchange‐correlation potential with correct asymptotic behavior , 1996 .

[60]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[61]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[62]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[63]  Michiel Sprik,et al.  New generalized gradient approximation functionals , 2000 .

[64]  W. J. Meath,et al.  The H2O-H2O dispersion energy constant and the dispersion of the specific refractivity of dilute water vapour , 1975 .

[65]  J. Autschbach Computation of Optical Rotation using Time–Dependent Density Functional Theory , 2007 .

[66]  John F. Stanton,et al.  The ACES II program system , 1992 .

[67]  B. Berne,et al.  Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function , 2001 .

[68]  Marat Valiev,et al.  Excitation energies of zinc porphyrin in aqueous solution using long-range corrected time-dependent density functional theory. , 2009, The journal of physical chemistry. A.

[69]  G. Schatz,et al.  Resonance vibrational Raman optical activity: a time-dependent density functional theory approach. , 2007, The Journal of chemical physics.

[70]  Sotiris S Xantheas,et al.  The flexible, polarizable, thole-type interaction potential for water (TTM2-F) revisited. , 2006, The journal of physical chemistry. A.

[71]  Benoît Champagne,et al.  Assessment of Conventional Density Functional Schemes for Computing the Polarizabilities and Hyperpolarizabilities of Conjugated Oligomers: An Ab Initio Investigation of Polyacetylene Chains , 1998 .

[72]  J. G. Snijders,et al.  Ultranonlocality in time-dependent current-density-functional theory: application to conjugated polymers. , 2002, Physical review letters.

[73]  J. B. Paul,et al.  Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy , 1997 .

[74]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[75]  A. van der Avoird,et al.  TERAHERTZ VIBRATION-ROTATION-TUNNELING SPECTROSCOPY OF WATER CLUSTERS IN THE TRANSLATIONAL BAND REGION , 2001 .

[76]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[77]  Benoît Champagne,et al.  Electric field dependence of the exchange-correlation potential in molecular chains , 1999 .

[78]  Sotiris S. Xantheas,et al.  On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy , 1996 .

[79]  Xin Xu,et al.  From The Cover: The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[80]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[81]  P. Senet,et al.  DFT study of polarizabilities and dipole moments of water clusters , 2005 .

[82]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[83]  Michiel Sprik,et al.  Ab initio molecular dynamics simulation of liquid water: Comparison of three gradient‐corrected density functionals , 1996 .

[84]  John M Herbert,et al.  Charge-transfer excited states in a pi-stacked adenine dimer, as predicted using long-range-corrected time-dependent density functional theory. , 2008, The journal of physical chemistry. B.

[85]  Teodora Todorova,et al.  Molecular dynamics simulation of liquid water: hybrid density functionals. , 2006, The journal of physical chemistry. B.

[86]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. I. Optimal structures and vibrational spectra , 1993 .

[87]  Axel D. Becke,et al.  Optimized density functionals from the extended G2 test set , 1998 .

[88]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[89]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[90]  S. Xantheas,et al.  Development of transferable interaction models for water. I. Prominent features of the water dimer potential energy surface , 2002 .

[91]  Matthias Scheffler,et al.  On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: benchmarks approaching the complete basis set limit. , 2007, The Journal of chemical physics.

[92]  A. J. Sadlej,et al.  Medium-size polarized basis sets for high-level-correlated calculations of molecular electric properties , 1991 .

[93]  P. Calaminici,et al.  Density functional calculations of molecular polarizabilities and hyperpolarizabilities , 1998 .

[94]  R. Saykally,et al.  Quantifying Hydrogen Bond Cooperativity in Water: VRT Spectroscopy of the Water Tetramer , 1996, Science.

[95]  J. G. Snijders,et al.  Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers , 2003 .

[96]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[97]  Robert J. Harrison,et al.  Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles , 2002 .

[98]  William F. Murphy,et al.  The Rayleigh depolarization ratio and rotational Raman spectrum of water vapor and the polarizability components for the water molecule , 1977 .

[99]  E. Baerends,et al.  Influence of the exchange-correlation potential in density-functional calculations on polarizabilities and absorption spectra of alkali-metal clusters , 2001 .

[100]  M. Head‐Gordon,et al.  Fifth order Moeller-Plesset perturbation theory: comparison of existing correlation methods and implementation of new methods correct to fifth order , 1990 .

[101]  R. Saykally,et al.  Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. , 1992, Science.

[102]  Swapan K. Ghosh,et al.  Polarizability of water clusters: An ab initio investigation , 2003 .

[103]  Sotiris S Xantheas,et al.  Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. , 2008, The Journal of chemical physics.

[104]  G. Avila Ab initio dipole polarizability surfaces of water molecule: static and dynamic at 514.5 nm. , 2005, The Journal of chemical physics.