High-Dimensional Chaos in dissipative and Driven Dynamical Systems

Studies of nonlinear dynamical systems with many degrees of freedom show that the behavior of these systems is significantly different as compared with the behavior of systems with less than two degrees of freedom. These findings motivated us to carry out a survey of research focusing on the behavior of high-dimensional chaos, which include onset of chaos, routes to chaos and the persistence of chaos. This paper reports on various methods of generating and investigating nonlinear, dissipative and driven dynamical systems that exhibit high-dimensional chaos, and reviews recent results in this new field of research. We study high-dimensional Lorenz, Duffing, Rossler and Van der Pol oscillators, modified canonical Chua's circuits, and other dynamical systems and maps, and we formulate general rules of high-dimensional chaos. Basic techniques of chaos control and synchronization developed for high-dimensional dynamical systems are also reviewed.

[1]  Takashi Hikihara,et al.  An experimental study on stabilization of unstable periodic motion in magneto-elastic chaos , 1996 .

[2]  Leon O. Chua,et al.  Intermittency in a piecewise-linear circuit , 1991 .

[3]  T. Kapitaniak,et al.  Transition to hyperchaos in coupled generalized van der Pol equations , 1991 .

[4]  Alexander Gluhovsky,et al.  Energy-conserving low-order models for three-dimensional Rayleigh-Bénard convection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  Ott,et al.  Enhancing synchronism of chaotic systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Jean-Luc Thiffeault,et al.  Energy-Conserving Truncations for Convection with Shear Flow , 1996 .

[8]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[9]  Brun,et al.  Control of NMR-laser chaos in high-dimensional embedding space. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[11]  N. H. March,et al.  Order and Chaos in Nonlinear Physical Systems , 1988 .

[12]  McKay,et al.  Chaos due to homoclinic and heteroclinic orbits in two coupled oscillators with nonisochronism. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  D. J. Tritton,et al.  Lyapunov exponents for the Miles' spherical pendulum equations , 1999 .

[14]  Christopher K. R. T. Jones,et al.  Global dynamical behavior of the optical field in a ring cavity , 1985 .

[15]  G. Zaslavsky The simplest case of a strange attractor , 1978 .

[16]  Ying-Cheng Lai,et al.  Low-dimensional chaos in high-dimensional phase space: how does it occur? , 2003 .

[17]  Zhaonan Liu The First Integrals of Nonlinear Acoustic Gravity Wave Equations , 2000 .

[18]  James H. Curry,et al.  A generalized Lorenz system , 1978 .

[19]  Hilborn Quantitative measurement of the parameter dependence of the onset of a crisis in a driven nonlinear oscillator. , 1985, Physical review. A, General physics.

[20]  Zhong-Ping Jiang,et al.  A note on chaotic secure communication systems , 2002 .

[21]  Ying-Cheng Lai,et al.  Route to high-dimensional chaos , 1999 .

[22]  F. Takens,et al.  On the nature of turbulence , 1971 .

[23]  Manuel A. Matias,et al.  Transition to High-Dimensional Chaos through quasiperiodic Motion , 2001, Int. J. Bifurc. Chaos.

[24]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[25]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[26]  Ioannis M. Kyprianidis,et al.  Antimonotonicity and Chaotic Dynamics in a Fourth-Order Autonomous nonlinear Electric Circuit , 2000, Int. J. Bifurc. Chaos.

[27]  Tomasz Kapitaniak Controlling chaotic oscillators without feedback , 1992 .

[28]  J. Yorke,et al.  Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics , 1987, Science.

[29]  Glorieux,et al.  Controlling unstable periodic orbits by a delayed continuous feedback. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[31]  W. Tucker The Lorenz attractor exists , 1999 .

[32]  Tomasz Kapitaniak,et al.  Chaos-hyperchaos transition in coupled Rössler systems , 2001 .

[33]  Gregory L. Baker,et al.  When Two Coupled Pendulums Equal One: a Synchronization Machine , 2003, Int. J. Bifurc. Chaos.

[34]  Tong Kun Lim,et al.  PHASE JUMPS NEAR A PHASE SYNCHRONIZATION TRANSITION IN SYSTEMS OF TWO COUPLED CHAOTIC OSCILLATORS , 1998 .

[35]  Louis M. Pecora,et al.  Cascading synchronized chaotic systems , 1993 .

[36]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[37]  Ulrich Parlitz,et al.  Comparison of Different Methods for Computing Lyapunov Exponents , 1990 .

[38]  Voss,et al.  Anticipating chaotic synchronization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Roy,et al.  Controlling hyperchaos in a multimode laser model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Oliver Steinbock,et al.  Anomalous Dispersion and Attractive Pulse Interaction in the 1,4-Cyclohexanedione Belousov-Zhabotinsky Reaction † , 2001 .

[41]  Socolar,et al.  Controlling spatiotemporal dynamics with time-delay feedback. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[43]  H. Abarbanel,et al.  Lyapunov exponents from observed time series. , 1990, Physical review letters.

[44]  T. Carroll,et al.  Synchronizing nonautonomous chaotic circuits , 1993 .

[45]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[46]  Nicolai Petkov,et al.  Proceedings of European Conference on Circuit Theory and Design , 1993 .

[47]  Robert Gilmore,et al.  Strange attractors are classified by bounding Tori. , 2003, Physical review letters.

[48]  Tang,et al.  Type-III intermittency of a laser. , 1991, Physical Review A. Atomic, Molecular, and Optical Physics.

[49]  Roy,et al.  Experimental synchronization of chaotic lasers. , 1994, Physical review letters.

[50]  A. Sukiennicki,et al.  Generalizations of the concept of marginal synchronization of chaos , 2000 .

[51]  Francis C. Moon,et al.  Chaotic and fractal dynamics , 1992 .

[52]  O. Rössler An equation for continuous chaos , 1976 .

[53]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[54]  E. Ott Strange attractors and chaotic motions of dynamical systems , 1981 .

[55]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[56]  R. Frehlich,et al.  Transition to chaos in the Duffing oscillator , 1982 .

[57]  P. J. Holmes,et al.  Second order averaging and bifurcations to subharmonics in duffing's equation , 1981 .

[58]  Grebogi,et al.  Experimental observation of crisis-induced intermittency and its critical exponent. , 1989, Physical review letters.

[59]  MacDonald,et al.  Two-dimensional vortex lattice melting. , 1993, Physical review letters.

[60]  Santo Banerjee,et al.  Chaotic Scenario in the Stenflo Equations , 2001 .

[61]  Juergen Kurths,et al.  Introduction: Control and synchronization in chaotic dynamical systems. , 2003, Chaos.

[62]  Yang Quasiperiodicity and transition to chaos , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  Ott,et al.  Controlling chaos using time delay coordinates via stabilization of periodic orbits. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  John Argyris,et al.  Routes to chaos and turbulence. A computational introduction , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[65]  H. Notbohm,et al.  Quasielastische Lichtstreuung von isoliertem Chromatin / Quasielastic Light Scattering of Isolated Chromatin , 1983, Zeitschrift fur Naturforschung. Section C, Biosciences.

[66]  M. M. El-Dessoky,et al.  Synchronization of van der Pol oscillator and Chen chaotic dynamical system , 2008 .

[67]  Christini,et al.  Experimental control of high-dimensional chaos: The driven double pendulum. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Hao Zhang,et al.  Controlling and tracking hyperchaotic Rössler system via active backstepping design , 2005 .

[69]  Zhang,et al.  From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems , 2000, Physical review letters.

[70]  Saverio Mascolo,et al.  CONTROLLING CHAOS VIA BACKSTEPPING DESIGN , 1997 .

[71]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[72]  Ahmad Harb,et al.  Nonlinear chaos control in a permanent magnet reluctance machine , 2004 .

[73]  K Pyragas,et al.  Analytical properties and optimization of time-delayed feedback control. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[74]  K. Kaneko Overview of coupled map lattices. , 1992, Chaos.

[75]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[76]  I Z Kiss,et al.  Stabilization of unstable steady states and periodic orbits in an electrochemical system using delayed-feedback control. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[77]  T. Kapitaniak,et al.  Transition to hyperchaos in chaotically forced coupled oscillators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[78]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[79]  M. Houssni,et al.  Suppression of chaos in averaged oscillator driven by external and parametric excitations , 2000 .

[80]  Peter Grassberger,et al.  On the fractal dimension of the Henon attractor , 1983 .

[81]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[82]  G. Pfister,et al.  Control of chaotic Taylor-Couette flow with time-delayed feedback. , 2001, Physical review letters.

[83]  J. Yorke,et al.  Attractors on an N-torus: Quasiperiodicity versus chaos , 1985 .

[84]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[85]  Mitchell J. Feigenbaum Some characterizations of strange sets , 1987 .

[86]  Chen,et al.  Transition to chaos for random dynamical systems. , 1990, Physical review letters.

[87]  Ying Zhang,et al.  Experimental investigation of partial synchronization in coupled chaotic oscillators. , 2003, Chaos.

[88]  P. Holmes Chaotic Dynamics , 1985, IEEE Power Engineering Review.

[89]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[90]  Martienssen,et al.  Controlling chaos experimentally in systems exhibiting large effective Lyapunov exponents. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[91]  Kestutis Pyragas,et al.  Stabilization of an unstable steady state in a Mackey-Glass system , 1995 .

[92]  Kunihiko Kaneko,et al.  Peeling the onion of order and chaos in a high-dimensional Hamiltonian system , 1993, chao-dyn/9311009.

[93]  Gamal M. Mahmoud,et al.  Strange attractors and chaos control in periodically forced complex Duffing's oscillators , 2001 .

[94]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[95]  Louis Weinberg,et al.  Automation and Remote Control , 1957 .

[96]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[97]  Goebel,et al.  Intermittency in the coherence collapse of a semiconductor laser with external feedback. , 1989, Physical review letters.

[98]  J. Gollub,et al.  Many routes to turbulent convection , 1980, Journal of Fluid Mechanics.

[99]  K. Stefanski Modelling chaos and hyperchaos with 3-D maps , 1998 .

[100]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[101]  Dressler,et al.  Symmetry property of the Lyapunov spectra of a class of dissipative dynamical systems with viscous damping. , 1988, Physical review. A, General physics.

[102]  H. Greenside,et al.  Spatially localized unstable periodic orbits of a high-dimensional chaotic system , 1998 .

[103]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[104]  Edward Ott,et al.  Fractal distribution of floaters on a fluid surface and the transition to chaos for random maps , 1991 .

[105]  McKay,et al.  Chaos and nonisochronism in weakly coupled nonlinear oscillators. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[106]  Grebogi,et al.  Spatiotemporal dynamics in a dispersively coupled chain of nonlinear oscillators. , 1989, Physical review. A, General physics.

[107]  James J. Stagliano,et al.  Doubling bifurcations of destroyed T 2 tori , 1996 .

[108]  Dora E. Musielak,et al.  Chaos and routes to chaos in coupled Duffing oscillators with multiple degrees of freedom , 2005 .

[109]  Jie Li,et al.  Chaos in the fractional order unified system and its synchronization , 2008, J. Frankl. Inst..

[110]  Dora E. Musielak,et al.  The Onset of Chaos in Nonlinear Dynamical Systems Determined with a New Fractal Technique , 2005 .

[111]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[112]  Lennart Carleson,et al.  The Dynamics of the Henon Map , 1991 .

[113]  W. Martienssen,et al.  Analysing the chaotic motion of a driven pendulum , 1992 .

[114]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[115]  H U Voss,et al.  Dynamic long-term anticipation of chaotic states. , 2001, Physical review letters.

[116]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[117]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[118]  H. Herzel Chaotic Evolution and Strange Attractors , 1991 .

[119]  Miguel A. Rubio,et al.  Experimental evidence of intermittencies associated with a subharmonic bifurcation , 1983 .

[120]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[121]  Zdzislaw E. Musielak,et al.  Generalized Lorenz models and their routes to chaos. II. Energy-conserving horizontal mode truncations , 2007 .

[122]  L. Chua,et al.  Canonical realization of Chua's circuit family , 1990 .

[123]  Chieko Murakami,et al.  Integrable Duffing's maps and solutions of the Duffing equation , 2003 .

[124]  Paul Manneville,et al.  Intermittency and the Lorenz model , 1979 .

[125]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[126]  Marcelo Messias,et al.  Bifurcation analysis of a new Lorenz-like chaotic system , 2008 .

[127]  Miguel A. F. Sanjuán,et al.  A generalized perturbed pendulum , 2003 .

[128]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[129]  Y. Lai,et al.  Observability of lag synchronization of coupled chaotic oscillators. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[130]  Manuel A. Matías,et al.  TRANSITION TO CHAOTIC ROTATING WAVES IN ARRAYS OF COUPLED LORENZ OSCILLATORS , 1999 .

[131]  C-H Lai,et al.  Tailoring wavelets for chaos control. , 2002, Physical review letters.

[132]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[133]  Peng,et al.  Synchronizing hyperchaos with a scalar transmitted signal. , 1996, Physical review letters.

[134]  Leon O. Chua,et al.  Chua's Circuit: an Overview Ten Years Later , 1994, J. Circuits Syst. Comput..

[135]  Anatole Kenfack Bifurcation structure of two coupled periodically driven double-well Duffing oscillators , 2003 .

[136]  Sepulchre,et al.  Controlling chaos in a network of oscillators. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[137]  Jonathan N. Blakely,et al.  Attractor Bubbling in Coupled hyperchaotic oscillators , 2000, Int. J. Bifurc. Chaos.

[138]  Leon O. Chua,et al.  Local Activity is the Origin of Complexity , 2005, Int. J. Bifurc. Chaos.

[139]  Z. J. Yang,et al.  Experimental study of chaos in a driven pendulum , 1987 .

[140]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[141]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[142]  Y. Ueda Randomly transitional phenomena in the system governed by Duffing's equation , 1978 .

[143]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[144]  Christophe Letellier,et al.  A nine-dimensional Lorenz system to study high-dimensional chaos , 1998 .

[145]  Ying-Cheng Lai,et al.  Bifurcation to High-Dimensional Chaos , 2000, Int. J. Bifurc. Chaos.

[146]  W. Price,et al.  On the relation between Rayleigh-Bénard convection and Lorenz system , 2006 .

[147]  Balth van der Pol Jun. Doct.Sc. LXXXV. On oscillation hysteresis in a triode generator with two degrees of freedom , 1922 .

[148]  Lennart Stenflo,et al.  Generalized Lorenz equations for acoustic-gravity waves in the atmosphere , 1996 .

[149]  D. J. Albers,et al.  Mathematik in den Naturwissenschaften Leipzig Routes to chaos in high-dimensional dynamical systems : a qualitative numerical study , 2006 .

[150]  Ying-Cheng Lai,et al.  UNSTABLE DIMENSION VARIABILITY AND COMPLEXITY IN CHAOTIC SYSTEMS , 1999 .

[151]  H. J. T. Smith,et al.  Driven pendulum for studying chaos , 1989 .

[152]  A. Harb,et al.  Chaos control of third-order phase-locked loops using backstepping nonlinear controller , 2004 .

[153]  Woafo,et al.  Dynamics of a system consisting of a van der Pol oscillator coupled to a Duffing oscillator. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[154]  J M Gonzalez-Miranda Amplitude envelope synchronization in coupled chaotic oscillators. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[155]  Anne C. Skeldon,et al.  Mode interaction in a double pendulum , 1992 .

[156]  O. Rössler An equation for hyperchaos , 1979 .

[157]  S. Narayanan,et al.  Chaos Control by Nonfeedback Methods in the Presence of Noise , 1999 .

[158]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[159]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[160]  B. Grammaticos,et al.  Nonlinear Dynamics: Integrability, Chaos and Patterns , 2004 .

[161]  Y. Pomeau,et al.  Intermittency in Rayleigh-Bénard convection , 1980 .

[162]  I. Prigogine Exploring Complexity , 2017 .

[163]  A. Zhabotinsky A history of chemical oscillations and waves. , 1991, Chaos.

[164]  Tadeusz Kaczorek Control systems: From linear analysis to synthesis of chaos: by Antonin Vaněček and Sergiej ČELIKOVSKÝ. Prentice Hall International Series in Systems and Control Engineering; Prentice Hall; Upper Saddle River, NJ, USA; 1996; 277 pp.; $58; ISBN: 0-13-220112-7 , 1996 .

[165]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[166]  Guo-Qun Zhong,et al.  Periodicity and Chaos in Chua's Circuit , 1985 .

[167]  Kapitaniak,et al.  Chaos-hyperchaos transition , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[168]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[169]  T. Carroll A simple circuit for demonstrating regular and synchronized chaos , 1995 .

[170]  D. Tritton,et al.  Ordered and chaotic motion of a forced spherical pendulum , 1986 .

[171]  Alison Smiley,et al.  Control of Chaotic Pattern Dynamics in Taylor Vortex Flow , 1999 .

[172]  Jose Antonio Coarasa Perez,et al.  OBSERVATION OF A POMEAU-MANNEVILLE INTERMITTENT ROUTE TO CHAOS IN A NONLINEAR OSCILLATOR , 1982 .

[173]  O. P. Manley,et al.  Energy conserving Galerkin approximations for 2-D hydrodynamic and MHD Bénard convection , 1982 .

[174]  J. Eckmann Roads to turbulence in dissipative dynamical systems , 1981 .

[175]  McKay,et al.  Hysteresis of synchronous-asynchronous regimes in a system of two coupled oscillators. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[176]  Manuel A. Matías,et al.  Direct transition to high-dimensional chaos through a global bifurcation , 2004, nlin/0407039.

[177]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[178]  Grebogi,et al.  Controlling chaos in high dimensional systems. , 1992, Physical review letters.

[179]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[180]  J C Sprott,et al.  Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[181]  E. Lorenz The local structure of a chaotic attractor in four dimensions , 1984 .

[182]  J. M. Gonzalez-Miranda Phase Synchronization and Chaos Suppression in a Set of Two Coupled Nonlinear oscillators , 2002, Int. J. Bifurc. Chaos.

[183]  R. Harrison,et al.  Chaos in light , 1986, Nature.

[184]  S. Woods,et al.  The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. S. 211-215 , 2005 .

[185]  F. Takens,et al.  Occurrence of strange AxiomA attractors near quasi periodic flows onTm,m≧3 , 1978 .

[186]  Zdzislaw E. Musielak,et al.  Generalized Lorenz models and their routes to chaos. III. Energy-conserving horizontal and vertical mode truncations , 2007 .

[187]  G. Chechin,et al.  Three-dimensional chaotic flows with discrete symmetries. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[188]  B. Huberman,et al.  Chaotic states and routes to chaos in the forced pendulum , 1982 .

[189]  M. Lakshmanan,et al.  Chaos in Nonlinear Oscillators: Controlling and Synchronization , 1996 .

[190]  Anagnostopoulos,et al.  Crisis-induced intermittency in a third-order electrical circuit. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[191]  E. A. Jackson,et al.  Perspectives of nonlinear dynamics , 1990 .

[192]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[193]  Dressler,et al.  Ruelle's rotation frequency for a symplectic chain of dissipative oscillators. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[194]  A. Kunick,et al.  Coupled Chaotic Oscillators , 1985 .

[195]  S. E. Khaikin,et al.  Theory of Oscillators , 1966 .

[196]  Eckehard Schöll,et al.  Handbook of Chaos Control , 2007 .

[197]  J. Rogers Chaos , 1876 .

[198]  James H. Curry,et al.  Bounded Solutions of Finite Dimensional Approximations to the Boussinesq Equations , 1979 .

[199]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[200]  Xu Pengcheng,et al.  Silnikov's orbit in coupled Duffing's systems , 2000 .

[201]  P. Holmes,et al.  New Approaches to Nonlinear Problems in Dynamics , 1981 .

[202]  Shanmuganathan Rajasekar,et al.  Migration control in two coupled Duffing oscillators , 1997 .

[203]  Guanrong Chen,et al.  Hyperchaos evolved from the generalized Lorenz equation , 2005, Int. J. Circuit Theory Appl..

[204]  Dmitry E. Postnov,et al.  CHAOTIC HIERARCHY IN HIGH DIMENSIONS , 2000 .

[205]  W. Martienssen,et al.  Local control of chaotic motion , 1993 .

[206]  Glorieux,et al.  Laser chaotic attractors in crisis. , 1986, Physical review letters.

[207]  Vladimir G. Ivancevic,et al.  High-Dimensional Chaotic and Attractor Systems , 2007 .

[208]  O. D. Almeida,et al.  Hamiltonian Systems: Chaos and Quantization , 1990 .

[209]  Gamal M. Mahmoud,et al.  On a complex Duffing system with random excitation , 2008 .

[210]  Zhujun Jing,et al.  Chaos control in duffing system , 2006 .

[211]  Schwartz,et al.  Controlling unstable states in reaction-diffusion systems modeled by time series. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[212]  Carroll,et al.  Pseudoperiodic driving: Eliminating multiple domains of attraction using chaos. , 1991, Physical review letters.

[213]  Barry Saltzman,et al.  Finite Amplitude Free Convection as an Initial Value Problem—I , 1962 .

[214]  Guanrong Chen,et al.  Controlling in between the Lorenz and the Chen Systems , 2002, Int. J. Bifurc. Chaos.

[215]  E. Ott,et al.  Controlling Chaotic Dynamical Systems , 1991, 1991 American Control Conference.

[216]  Hong-Jun Zhang,et al.  Phase effect of two coupled periodically driven Duffing oscillators , 1998 .

[217]  K Pyragas,et al.  Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[218]  Lima,et al.  Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[219]  Ercan Solak,et al.  Partial identification of Lorenz system and its application to key space reduction of chaotic cryptosystems , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[220]  Y. Ueda Survey of regular and chaotic phenomena in the forced Duffing oscillator , 1991 .

[221]  Visarath In,et al.  Control and synchronization of chaos in high dimensional systems: Review of some recent results. , 1997, Chaos.

[222]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[223]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[224]  S. Mahulikar,et al.  Physica Scripta , 2004 .

[225]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[226]  D. A. Usikov,et al.  Nonlinear Physics: From the Pendulum to Turbulence and Chaos , 1988 .

[227]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[228]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[229]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[230]  J. M. Gonzalez-Miranda,et al.  Generalized synchronization in directionally coupled systems with identical individual dynamics. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[231]  Guanrong Chen,et al.  On a four-dimensional chaotic system , 2005 .

[232]  David Aubin,et al.  Writing the History of Dynamical Systems and Chaos: Longue Durée and Revolution, Disciplines and Cultures , 2002 .

[233]  Kunihiko Kaneko,et al.  On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection , 1998, chao-dyn/9802016.

[234]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[235]  J M Liu,et al.  Experimental verification of anticipated and retarded synchronization in chaotic semiconductor lasers. , 2003, Physical review letters.

[236]  Wu Xiaoqun,et al.  A unified chaotic system with continuous periodic switch , 2004 .

[237]  Balth. van der Pol,et al.  VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .

[238]  Ruby Krishnamurti,et al.  Large-scale flow in turbulent convection: a mathematical model , 1986, Journal of Fluid Mechanics.

[239]  N. K. M’Sirdi,et al.  Controlling chaotic and hyperchaotic systems via energy regulation , 2003 .

[240]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[241]  Jean-Marc Flesselles,et al.  Dispersion relation for waves in the Belousov–Zhabotinsky reaction , 1998 .

[242]  Robert M. May,et al.  NONLINEAR PHENOMENA IN ECOLOGY AND EPIDEMIOLOGY * , 1980 .

[243]  Qu,et al.  Controlling spatiotemporal chaos in coupled map lattice systems. , 1994, Physical review letters.

[244]  Huang,et al.  Type-II intermittency in a coupled nonlinear oscillator: Experimental observation. , 1987, Physical review. A, General physics.

[245]  Edward Ott,et al.  Bifurcations and Strange Behavior in Instability Saturation by Nonlinear Mode Coupling , 1980 .

[246]  Daizhan Cheng,et al.  A New Chaotic System and Beyond: the Generalized Lorenz-like System , 2004, Int. J. Bifurc. Chaos.

[247]  M. Feigenbaum Universal behavior in nonlinear systems , 1983 .

[248]  H. Poincaré,et al.  Erratum zu: Etude des surfaces asymptotiques , 1890 .

[249]  Singer,et al.  Controlling a chaotic system. , 1991, Physical review letters.

[250]  L. Chua,et al.  The double scroll family , 1986 .

[251]  Pyragas,et al.  Weak and strong synchronization of chaos. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[252]  S. Čelikovský,et al.  Control systems: from linear analysis to synthesis of chaos , 1996 .

[253]  Parlitz,et al.  Bifurcation analysis of two coupled periodically driven Duffing oscillators. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[254]  Robert C. Hilborn,et al.  Chaos and Nonlinear Dynamics , 2000 .

[255]  Manuel A. Matías,et al.  Experimental observation of a periodic rotating wave in rings of unidirectionally coupled analog Lorenz oscillators , 1998 .

[256]  Juhn-Horng Chen,et al.  Chaotic dynamics of the fractionally damped van der Pol equation , 2008 .

[257]  G. Baier,et al.  Maximum hyperchaos in generalized Hénon maps , 1990 .

[258]  Yang Jun-Zhong,et al.  GENERALIZED WINDING NUMBER OF CHAOTIC OSCILLATORS AND HOPF BIFURCATION FROM SYNCHRONOUS CHAOS , 1999 .

[259]  R. Gilmore Topological analysis of chaotic dynamical systems , 1998 .

[260]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[261]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[262]  Lee,et al.  Multiple transitions to chaos in a damped parametrically forced pendulum. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[263]  Choy Heng Lai,et al.  Bifurcation behavior of the generalized Lorenz equations at large rotation numbers , 1997 .

[264]  Norman R. Heckenberg,et al.  Observation of generalized synchronization of chaos in a driven chaotic system , 1998 .

[265]  M. Rueff,et al.  Bifurcation schemes of the Lorenz model , 1984 .

[266]  M. Yamaguti,et al.  Chaos and Fractals , 1987 .

[267]  P. Holmes,et al.  On the attracting set for Duffing's equation: II. A geometrical model for moderate force and damping , 1983 .

[268]  Weichung Wang,et al.  Chaotic Behaviors of Bistable Laser Diodes and Its Application in Synchronization of Optical Communication : Optics and Quantum Electronics , 2001 .

[269]  Celso Grebogi,et al.  From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space , 1997 .