On convergence and semi-convergence of SSOR-like methods for augmented linear systems
暂无分享,去创建一个
[1] Michael K. Ng,et al. On Inexact Preconditioners for Nonsymmetric Matrices , 2005, SIAM J. Sci. Comput..
[2] Yi-min Wei,et al. Fast corrected Uzawa methods for solving symmetric saddle point problems , 2006 .
[3] David J. Evans,et al. Generalized AOR method for the augmented system , 2004, Int. J. Comput. Math..
[4] Junfeng Lu,et al. A Modified Nonlinear Inexact Uzawa Algorithm with a Variable Relaxation Parameter for the Stabilized Saddle Point Problem , 2010, SIAM J. Matrix Anal. Appl..
[5] Ting-Zhu Huang,et al. A modified SSOR iterative method for augmented systems , 2009 .
[6] Eric de Sturler,et al. Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..
[7] Naimin Zhang,et al. Semi-convergence analysis of GMSSOR methods for singular saddle point problems , 2014, Comput. Math. Appl..
[8] Ting-Zhu Huang,et al. Convergence of a generalized MSSOR method for augmented systems , 2012, J. Comput. Appl. Math..
[9] Zheng Li,et al. Modified SOR-like method for the augmented system , 2007, Int. J. Comput. Math..
[10] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[11] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[12] E. Sturler,et al. Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems , 2006 .
[13] Yimin Wei,et al. A note on constraint preconditioners for nonsymmetric saddle point problems , 2007, Numer. Linear Algebra Appl..
[14] M. T. Darvishi,et al. A modified symmetric successive overrelaxation method for augmented systems , 2011, Comput. Math. Appl..
[15] Guo-Feng Zhang,et al. On generalized symmetric SOR method for augmented systems , 2008 .
[16] Tingzhu Huang,et al. The Semi-convergence of Generalized SSOR Method for Singular Augmented Systems , 2009, HPCA.
[17] Gene H. Golub,et al. SOR-like Methods for Augmented Systems , 2001 .
[18] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[19] Yong-Lin Chen,et al. Semiconvergence criteria of iterations and extrapolated iterations and constructive methods of semiconvergent iteration matrices , 2005, Appl. Math. Comput..
[20] M. Ng,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[21] Nira Dyn,et al. The numerical solution of equality constrained quadratic programming problems , 1983 .
[22] Gene H. Golub,et al. Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..
[23] Naimin Zhang,et al. Optimal parameters of the generalized symmetric SOR method for augmented systems , 2014, J. Comput. Appl. Math..
[24] Jun Zou,et al. Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems , 2002, Numerische Mathematik.
[25] Jun Zou,et al. An Iterative Method with Variable Relaxation Parameters for Saddle-Point Problems , 2001, SIAM J. Matrix Anal. Appl..
[26] Naimin Zhang,et al. On the optimal parameters of GMSSOR method for saddle point problems , 2016, Appl. Math. Lett..
[27] Andrew J. Wathen,et al. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.
[29] Xiaoyan Zhou,et al. On the minimum convergence factor of a class of GSOR-like methods for augmented systems , 2014, Numerical Algorithms.
[30] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..
[31] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.
[32] S. A. Edalatpanah,et al. On the modified symmetric successive over-relaxation method for augmented systems , 2015 .
[33] S. A. Edalatpanah,et al. A new modified SSOR iteration method for solving augmented linear systems , 2014, Int. J. Comput. Math..
[34] M. Madalena Martins,et al. A variant of the AOR method for augmented systems , 2012, Math. Comput..
[35] Michael K. Ng,et al. Constraint Preconditioners for Symmetric Indefinite Matrices , 2009, SIAM J. Matrix Anal. Appl..
[36] Tie Zhang,et al. Two-parameter GSOR method for the augmented system , 2005, Int. J. Comput. Math..
[37] Zeng-Qi Wang,et al. On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .
[38] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[39] Nicholas I. M. Gould,et al. Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[40] Ke Wang,et al. SSOR-like methods for saddle point problems , 2009, Int. J. Comput. Math..
[41] Xu Kong,et al. Optimal parameters of GSOR-like methods for solving the augmented linear systems , 2008, Appl. Math. Comput..
[42] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[43] Bing Zheng,et al. On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .
[44] Nicholas I. M. Gould,et al. On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..
[45] Nikolaos M. Missirlis,et al. A comparison of the Extrapolated Successive Overrelaxation and the Preconditioned Simultaneous Displacement methods for augmented linear systems , 2015, Numerische Mathematik.
[46] M. T. Darvishi,et al. Symmetric SOR method for augmented systems , 2006, Appl. Math. Comput..
[47] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.