Short Proofs May Be Spacious: An Optimal Separation of Space and Length in Resolution
暂无分享,去创建一个
[1] J. Krajícek. On the weak pigeonhole principle , 2001 .
[2] Jochen Messner,et al. On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution , 2009, ICALP.
[3] Johan Håstad,et al. Towards an optimal separation of space and length in resolution , 2008, Theory Comput..
[4] Robert E. Tarjan,et al. Variations of a pebble game on graphs , 1978 .
[5] Stephen A. Cook,et al. Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..
[6] Noga Alon,et al. Smaller Explicit Superconcentrators , 2003, Internet Math..
[7] Archie Blake. Canonical expressions in Boolean algebra , 1938 .
[8] Eli Ben-Sasson,et al. Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..
[9] Eli Ben-Sasson,et al. Space complexity of random formulae in resolution , 2003, Random Struct. Algorithms.
[10] Toniann Pitassi,et al. The complexity of resolution refinements , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[11] Jacobo Torán. Lower Bounds for Space in Resolution , 1999, CSL.
[12] Eli Ben-Sasson,et al. Short proofs are narrow—resolution made simple , 2001, JACM.
[13] Henry A. Kautz,et al. Algorithmic applications of propositional proof complexity , 2005 .
[14] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[15] Henry A. Kautz,et al. Understanding the power of clause learning , 2003, IJCAI 2003.
[16] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus , 1983 .
[17] Albert Atserias,et al. A combinatorial characterization of resolution width , 2008, J. Comput. Syst. Sci..
[18] Ran Raz,et al. Separation of the Monotone NC Hierarchy , 1999, Comb..
[19] Zvi Galil. On Resolution with Clauses of Bounded Size , 1977, SIAM J. Comput..
[20] HierarchyRan Raz,et al. Separation of the Monotone NC , 1999 .
[21] Endre Szemerédi,et al. Many hard examples for resolution , 1988, JACM.
[22] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[23] Bart Selman,et al. The state of SAT , 2007, Discret. Appl. Math..
[24] Jakob Nordström. Narrow Proofs May Be Spacious: Separating Space and Width in Resolution , 2009, SIAM J. Comput..
[25] Michael Alekhnovich,et al. Space Complexity in Propositional Calculus , 2002, SIAM J. Comput..
[26] Jakob Nordström. Short Proofs May Be Spacious : Understanding Space in Resolution , 2008 .
[27] J. Kraj. On the Weak Pigeonhole Principle , 2001 .
[28] Jacobo Torán,et al. Space and Width in Propositional Resolution (Column: Computational Complexity) , 2004, Bull. EATCS.
[29] Eli Ben-Sasson,et al. Size space tradeoffs for resolution , 2002, STOC '02.
[30] Leslie G. Valiant,et al. On Time Versus Space , 1977, JACM.
[31] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[32] Jacobo Torán,et al. Space Bounds for Resolution , 1999, STACS.
[33] Michael E. Saks,et al. The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..
[34] Zvi Galil,et al. Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..
[35] Nathan Segerlind,et al. The Complexity of Propositional Proofs , 2007, Bull. Symb. Log..
[36] Henry A. Kautz,et al. Using Problem Structure for Efficient Clause Learning , 2003, SAT.
[37] Maria Luisa Bonet,et al. On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..
[38] Alasdair Urquhart,et al. Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .
[39] Michael Alekhnovich,et al. An exponential separation between regular and general resolution , 2002, STOC '02.
[40] Michael Alekhnovich,et al. An Exponential Separation between Regular and General Resolution , 2007, Theory Comput..
[41] Jacobo Torán,et al. A combinatorial characterization of treelike resolution space , 2003, Inf. Process. Lett..
[42] Armin Haken,et al. The Intractability of Resolution , 1985, Theor. Comput. Sci..