Short Proofs May Be Spacious: An Optimal Separation of Space and Length in Resolution

A number of works have looked at the relationship between length and space of resolution proofs. A notorious question has been whether the existence of a short proof implies the existence of a proof that can be verified using limited space.In this paper we resolve the question by answering it negatively in the strongest possible way. We show that there are families of 6-CNF formulas of size n, for arbitrarily large n, that have resolution proofs of length O(n) but for which any proof requires space Omega(n/log n). This is the strongest asymptotic separation possible since any proof of length O(n) can always be transformed into a proof in space O(n / log n).Our result follows by reducing the space complexity of so called pebbling formulas over a directed acyclic graph to the black-white pebbling price of the graph.The proof is somewhat simpler than previous results (in particular, those reported in [Nordstrom 2006, Nordstrom and Hastad 2008]) as it uses a slightly different flavor of pebbling formulas which allows for a rather straightforward reduction of proof space to standard black-white pebbling price.

[1]  J. Krajícek On the weak pigeonhole principle , 2001 .

[2]  Jochen Messner,et al.  On Minimal Unsatisfiability and Time-Space Trade-offs for k-DNF Resolution , 2009, ICALP.

[3]  Johan Håstad,et al.  Towards an optimal separation of space and length in resolution , 2008, Theory Comput..

[4]  Robert E. Tarjan,et al.  Variations of a pebble game on graphs , 1978 .

[5]  Stephen A. Cook,et al.  Storage Requirements for Deterministic Polynomial Time Recognizable Languages , 1976, J. Comput. Syst. Sci..

[6]  Noga Alon,et al.  Smaller Explicit Superconcentrators , 2003, Internet Math..

[7]  Archie Blake Canonical expressions in Boolean algebra , 1938 .

[8]  Eli Ben-Sasson,et al.  Near Optimal Separation Of Tree-Like And General Resolution , 2004, Comb..

[9]  Eli Ben-Sasson,et al.  Space complexity of random formulae in resolution , 2003, Random Struct. Algorithms.

[10]  Toniann Pitassi,et al.  The complexity of resolution refinements , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[11]  Jacobo Torán Lower Bounds for Space in Resolution , 1999, CSL.

[12]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[13]  Henry A. Kautz,et al.  Algorithmic applications of propositional proof complexity , 2005 .

[14]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[15]  Henry A. Kautz,et al.  Understanding the power of clause learning , 2003, IJCAI 2003.

[16]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[17]  Albert Atserias,et al.  A combinatorial characterization of resolution width , 2008, J. Comput. Syst. Sci..

[18]  Ran Raz,et al.  Separation of the Monotone NC Hierarchy , 1999, Comb..

[19]  Zvi Galil On Resolution with Clauses of Bounded Size , 1977, SIAM J. Comput..

[20]  HierarchyRan Raz,et al.  Separation of the Monotone NC , 1999 .

[21]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[22]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[23]  Bart Selman,et al.  The state of SAT , 2007, Discret. Appl. Math..

[24]  Jakob Nordström Narrow Proofs May Be Spacious: Separating Space and Width in Resolution , 2009, SIAM J. Comput..

[25]  Michael Alekhnovich,et al.  Space Complexity in Propositional Calculus , 2002, SIAM J. Comput..

[26]  Jakob Nordström Short Proofs May Be Spacious : Understanding Space in Resolution , 2008 .

[27]  J. Kraj On the Weak Pigeonhole Principle , 2001 .

[28]  Jacobo Torán,et al.  Space and Width in Propositional Resolution (Column: Computational Complexity) , 2004, Bull. EATCS.

[29]  Eli Ben-Sasson,et al.  Size space tradeoffs for resolution , 2002, STOC '02.

[30]  Leslie G. Valiant,et al.  On Time Versus Space , 1977, JACM.

[31]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[32]  Jacobo Torán,et al.  Space Bounds for Resolution , 1999, STACS.

[33]  Michael E. Saks,et al.  The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..

[34]  Zvi Galil,et al.  Explicit Constructions of Linear-Sized Superconcentrators , 1981, J. Comput. Syst. Sci..

[35]  Nathan Segerlind,et al.  The Complexity of Propositional Proofs , 2007, Bull. Symb. Log..

[36]  Henry A. Kautz,et al.  Using Problem Structure for Efficient Clause Learning , 2003, SAT.

[37]  Maria Luisa Bonet,et al.  On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems , 2000, SIAM J. Comput..

[38]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[39]  Michael Alekhnovich,et al.  An exponential separation between regular and general resolution , 2002, STOC '02.

[40]  Michael Alekhnovich,et al.  An Exponential Separation between Regular and General Resolution , 2007, Theory Comput..

[41]  Jacobo Torán,et al.  A combinatorial characterization of treelike resolution space , 2003, Inf. Process. Lett..

[42]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..