Concentration of the Intrinsic Volumes of a Convex Body

The intrinsic volumes are measures of the content of a convex body. This paper applies probabilistic and information-theoretic methods to study the sequence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volume sequence with maximum entropy.

[1]  Joel A. Tropp,et al.  From Steiner Formulas for Cones to Concentration of Intrinsic Volumes , 2013, Discret. Comput. Geom..

[2]  Michael B. McCoy A geometric analysis of convex demixing , 2013 .

[3]  K. Ball An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .

[4]  Yaming Yu,et al.  On the Maximum Entropy Properties of the Binomial Distribution , 2008, IEEE Transactions on Information Theory.

[5]  O. Johnson Log-concavity and the maximum entropy property of the Poisson distribution , 2006, math/0603647.

[6]  H. Hadwiger Beweis eines Funktionalsatzes für konvexe Körper , 1951 .

[7]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[8]  Simone Chevet Processus gaussiens et volumes mixtes , 1976 .

[9]  S. Bobkov,et al.  From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .

[10]  P. Gruber,et al.  Convex and Discrete Geometry , 2007 .

[11]  L. Goldstein,et al.  Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner Formula , 2014, 1411.6265.

[12]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[13]  Gustavo Posta,et al.  Convex entropy decay via the Bochner-Bakry-Emery approach , 2007 .

[14]  V. Milman,et al.  Asymptotic Geometric Analysis, Part I , 2015 .

[15]  Liyao Wang Heat Capacity Bound, Energy Fluctuations and Convexity , 2014 .

[16]  Liyao Wang,et al.  Optimal Concentration of Information Content For Log-Concave Densities , 2015, ArXiv.

[17]  Leonid Gurvits A Short Proof, Based on Mixed Volumes, of Liggett's Theorem on the Convolution of Ultra-Logconcave Sequences , 2009, Electron. J. Comb..

[18]  Joel A. Tropp,et al.  Sharp Recovery Bounds for Convex Demixing, with Applications , 2012, Found. Comput. Math..

[19]  Grigoris Paouris,et al.  On a quantitative reversal of Alexandrov’s inequality , 2018, Transactions of the American Mathematical Society.

[20]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[21]  Joel A. Tropp,et al.  The achievable performance of convex demixing , 2013, ArXiv.

[22]  S. Bobkov,et al.  Concentration of the information in data with log-concave distributions , 2010, 1012.5457.

[23]  H. Hadwiger,et al.  Das Will'sche Funktional , 1975 .

[24]  P Mcmullen,et al.  Non-linear angle-sum relations for polyhedral cones and polytopes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[26]  G. C. Shephard Inequalities between mixed volumes of convex sets , 1960 .

[27]  Ramon van Handel,et al.  Mixed volumes and the Bochner method , 2018, Proceedings of the American Mathematical Society.

[28]  W. Weil,et al.  Stochastic and Integral Geometry , 2008 .

[29]  Richard A. Vitale,et al.  The Wills functional and Gaussian processes , 1996 .

[30]  J. Wellner,et al.  Log-Concavity and Strong Log-Concavity: a review. , 2014, Statistics surveys.

[31]  Joel A. Tropp,et al.  Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.

[32]  H. Hadwiger Additive Funktionale k-dimensionaler Eikörper I , 1952 .

[33]  Karim A. Adiprasito,et al.  Whitney numbers of arrangements via measure concentration of intrinsic volumes , 2016, 1606.09412.

[34]  H. Hadwiger Additive Funktionale k-dimensionaler Eikörper II , 1952 .

[35]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[36]  K. Ball An Elementary Introduction to Modern Convex Geometry , 1997 .

[37]  Keith Ball,et al.  Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.

[38]  Peter McMullen,et al.  Inequalities between intrinsic volumes , 1991 .

[39]  B. Bollobás THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .