暂无分享,去创建一个
Joel A. Tropp | Ivan Nourdin | Giovanni Peccati | Michael B. McCoy | Martin Lotz | J. Tropp | Michael B. McCoy | Martin Lotz | G. Peccati | I. Nourdin
[1] Joel A. Tropp,et al. From Steiner Formulas for Cones to Concentration of Intrinsic Volumes , 2013, Discret. Comput. Geom..
[2] Michael B. McCoy. A geometric analysis of convex demixing , 2013 .
[3] K. Ball. An elementary introduction to modern convex geometry, in flavors of geometry , 1997 .
[4] Yaming Yu,et al. On the Maximum Entropy Properties of the Binomial Distribution , 2008, IEEE Transactions on Information Theory.
[5] O. Johnson. Log-concavity and the maximum entropy property of the Poisson distribution , 2006, math/0603647.
[6] H. Hadwiger. Beweis eines Funktionalsatzes für konvexe Körper , 1951 .
[7] R. Adler,et al. Random Fields and Geometry , 2007 .
[8] Simone Chevet. Processus gaussiens et volumes mixtes , 1976 .
[9] S. Bobkov,et al. From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities , 2000 .
[10] P. Gruber,et al. Convex and Discrete Geometry , 2007 .
[11] L. Goldstein,et al. Gaussian Phase Transitions and Conic Intrinsic Volumes: Steining the Steiner Formula , 2014, 1411.6265.
[12] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[13] Gustavo Posta,et al. Convex entropy decay via the Bochner-Bakry-Emery approach , 2007 .
[14] V. Milman,et al. Asymptotic Geometric Analysis, Part I , 2015 .
[15] Liyao Wang. Heat Capacity Bound, Energy Fluctuations and Convexity , 2014 .
[16] Liyao Wang,et al. Optimal Concentration of Information Content For Log-Concave Densities , 2015, ArXiv.
[17] Leonid Gurvits. A Short Proof, Based on Mixed Volumes, of Liggett's Theorem on the Convolution of Ultra-Logconcave Sequences , 2009, Electron. J. Comb..
[18] Joel A. Tropp,et al. Sharp Recovery Bounds for Convex Demixing, with Applications , 2012, Found. Comput. Math..
[19] Grigoris Paouris,et al. On a quantitative reversal of Alexandrov’s inequality , 2018, Transactions of the American Mathematical Society.
[20] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[21] Joel A. Tropp,et al. The achievable performance of convex demixing , 2013, ArXiv.
[22] S. Bobkov,et al. Concentration of the information in data with log-concave distributions , 2010, 1012.5457.
[23] H. Hadwiger,et al. Das Will'sche Funktional , 1975 .
[24] P Mcmullen,et al. Non-linear angle-sum relations for polyhedral cones and polytopes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[25] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[26] G. C. Shephard. Inequalities between mixed volumes of convex sets , 1960 .
[27] Ramon van Handel,et al. Mixed volumes and the Bochner method , 2018, Proceedings of the American Mathematical Society.
[28] W. Weil,et al. Stochastic and Integral Geometry , 2008 .
[29] Richard A. Vitale,et al. The Wills functional and Gaussian processes , 1996 .
[30] J. Wellner,et al. Log-Concavity and Strong Log-Concavity: a review. , 2014, Statistics surveys.
[31] Joel A. Tropp,et al. Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.
[32] H. Hadwiger. Additive Funktionale k-dimensionaler Eikörper I , 1952 .
[33] Karim A. Adiprasito,et al. Whitney numbers of arrangements via measure concentration of intrinsic volumes , 2016, 1606.09412.
[34] H. Hadwiger. Additive Funktionale k-dimensionaler Eikörper II , 1952 .
[35] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[36] K. Ball. An Elementary Introduction to Modern Convex Geometry , 1997 .
[37] Keith Ball,et al. Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.
[38] Peter McMullen,et al. Inequalities between intrinsic volumes , 1991 .
[39] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .